ji

PAPL

A Relational Separation Logic for

joint work with
presented by

on the

Effect Handlers

Simcha van Collem, Ines Wright, and Robbert Krebbers
Paulo Emilio de Vilhena
15th of January, 2026

Introduction

Goal. Design of a relational separation logic for effect handlers.

Introduction

Goal. Design of a relational separation logic for effect handlers.

In short, a relational separation logic consists of
an assertion language, to specify programs;
and a set of proof rules, to verify programs compositionally.

The key feature is the refinement relation, to assert that es is a correct abstraction of e:

ei < es {R} 2 “if eiterminates with value vi, then es terminates with a value vss.t. R (vi, vs)”

Introduction

Goal. Design of a relational separation logic for effect handlers.

In short, a relational separation logic consists of
an assertion language, to specify programs;
and a set of proof rules, to verify programs compositionally.

The key feature is the refinement relation, to assert that es is a correct abstraction of e:

ei < es {R} 2 “if eiterminates with value vi, then es terminates with a value vss.t. R (vi, vs)”

Applications.

e Program Verification & Program Reasoning.
To specify and understand a program in terms of a simpler implementation.

e Compiler Optimisations.
An optimisation is correct if the optimised program does not introduce behaviours.

e Type Systems.
To show soundness and abstraction properties of type systems.

Introduction

Goal. Design of a relational separation logic for effect handlers.

In short, a relational separation logic consists of
an assertion language, to specify programs;
and a set of proof rules, to verify programs compositionally.

The key feature is the refinement relation, to assert that es is a correct abstraction of e:

ei < es {R} 2 “if eiterminates with value vi, then es terminates with a value vss.t. R (vi, vs)”

Applications.

e Program Verification & Program Reasoning.
To specify and understand a program in terms of a simpler implementation.

e Compiler Optimisations.
An optimisation is correct if the optimised program does not introduce behaviours.

e Type Systems.
To show soundness and abstraction properties of type systems.

A relational separation logic allows an effect-handler-based implementation of concurrency
to be explained in terms of a direct implementation:

effect Fork : (unit -> unit) -> unit
let g = Queue.create () 1in
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k qg;
run f
| _ -
if not (Queue.empty q) then
let k = Queue.pop g in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

A relational separation logic allows an effect-handler-based implementation of concurrency
to be explained in terms of a direct implementation:

effect Fork : (unit -> unit) -> unit main (fun f -> fork (f ()))
let g = Queue.create () 1in
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k qg;
run f
| _ -
if not (Queue.empty q) then
let k = Queue.pop g in continue k ()

A

in
run (fun () -> main (fun f -> perform (Fork f)))

A relational separation logic allows an effect-handler-based implementation of concurrency
to be explained in terms of a direct implementation:

effect Fork : (unit -> unit) -> unit main (fun f -> fork (f ()))
let g = Queue.create () 1in
let rec run f =
match f () with
| effect (Fork f), k —>
Queue.push k q;
run f
| _ >
if not (Queue.empty q) then
let k = Queue.pop g in continue k ()

A

in
run (fun () => main (fun £ -> perform (Fork f)))

It formalises the intuition, that, under this handler, an effect Fork can be seen as fork itself:

perform (Fork f) < fork (f ())

The meaning of an effect depends on a handler.

1. Definition of the Refinement Relation.
The standard refinement relation does not specify the case of effects:

ei < es {R} 2 “if ei terminates with value v, then es terminates with a value vs s.t. R (vi, vs)”

2. Compositional Reasoning (Handler vs. Handlee).
How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
How to reason about a program independently of its evaluation context?

Challenges

The meaning of an effect depends on a handler.

1. Definition of the Refinement Relation.
The standard refinement relation does not specify the case of effects:

ei < es {R} 2 “if ei terminates with value v, then es terminates with a value vs s.t. R (vi, vs)”

2. Compositional Reasoning (Handler vs. Handlee).
How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
How to reason about a program independently of its evaluation context?

Challenges

The meaning of an effect depends on a handler.

1. Definition of the Refinement Relation.
The standard refinement relation does not specify the case of effects:

ei < es {R} 2 “if eiterminates with value v, then es terminates with a value vss.t. R (vi, vs)”

2. Compositional Reasoning (Handler vs. Handlee).
How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
How to reason about a program independently of its evaluation context?

match main (fun f -> perform (Fork f)) with ¢ main (fun f -> fork (f ()))
| effect (Fork f), k -> h

| _ —>r / \
Handlee Part Handler Part

main (fun f -> perform (Fork f)) < 7
main (fun f -> fork (f ()))

Challenges

The meaning of an effect depends on a handler.

1. Definition of the Refinement Relation.
The standard refinement relation does not specify the case of effects:

»

ei < es {R} 2 “if eiterminates with value vi, then es terminates with a value vs s.t. R (vi, vs)

2. Compositional Reasoning (Handler vs. Handlee).
How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
How to reason about a program independently of its evaluation context?

ei < es {y'i, Vs. K1[y1:| < Ks[ys] {R}}

(Standard) Bind
K'i[ei] < Ks[es] {R}

The key idea is to extend the refinement relation with a parameterised relational theory,
an axiomatisation of relations that should hold:

ei £ es <T> {R}

The resulting logic is called baze; it is built on top of Iris.
A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

7 : (expr x expr x ((expr x expr) - iProp)) > 1iProp

VT V V L
impl. spec. return condition precondition
(postcondition)

The key idea is to extend the refinement relation with a parameterised relational theory,
an axiomatisation of relations that should hold:

ei £ es <T> {R}

The resulting logic is called baze; it is built on top of Iris.
A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

7 : (expr x expr x ((expr x expr) - iProp)) > 1iProp

VT V V L
impl. spec. return condition precondition
(postcondition)

Examples. Empty theory.

1l (ei, es, R) = False

ei < es {R} © ei < es (L) {R}

10

The key idea is to extend the refinement relation with a parameterised relational theory,
an axiomatisation of relations that should hold:

ei £ es <T> {R}

The resulting logic is called baze; it is built on top of Iris.
A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

7 : (expr x expr x ((expr x expr) - iProp)) > 1iProp

VT V V L
impl. spec. return condition precondition
(postcondition)

Examples. Concurrency effects.

FORK(perform (Fork fi), fork (fs ()), R) =
> fi () < fs () (FORK) {True} » R((), ())

> fi () £ fs () {FORK) {True} —x

perform (Fork fi) < fork (fs ()) (FORK) {yi, ys. yi = ys = ()} 11

Problem. The meaning of an effect depends on a handler.

Solution. (Biorthogonality) To universally quantify over contexts that validate a theory.

Under the hood, the parameterised refinement relation unfolds to a standard refinement
with ei and es under universally quantified contexts:

ei < es{7T)Y {R} 2 VKiKsS. (7T) {R} Ki £ Ks {S} —x Ki[ei] < Ks[es] {S}

Definition of the validation of a relational theory T by a pair of contexts:
(T) {R} Ki £ Ks {S} =

(Vvi vs. R(vi, vs) =k Ki[vi] < Ks[vs] {S})
A
(Vei’ es’. T ei’, es’, R) —x Ki[ei’'] £ Ks[es'] {S})
Y
%~ T(ei’, es’, R)

12

Challenge 2 - Compositional Reasoning (Handler vs. Handlee)

The exhaustion rule allows compositional reasoning about programs with effect handlers.

ei $ es {7T) {R}

(Vvi vs. R(vi, vs) =X Ki[vi] < Ks[vs] (F) {S})
A
(Vei” es’. T ei’, e, R) —xk Ki[ei’'] < Ks[es"] (F) {S})

Exhaustion

K'i[e'i] < Ks[es] (T} {S}

The rule allows one to see the theory 7 as a boundary between handlee and handler.

13

Challenge 3 - Context-Local Reasoning

The bind rule allows context-local reasoning:

traversable (Ki, Ks, 7)
ei < es {(7T) {yi, ys. Kilyi]l < Ks[ys] (7)) {R}}

Bind
Ki[ei] < Ks[es] (7) {R}

The contexts should be able to “traverse” the relational theory 7

traversable (Ki, Ks, 7) = “Thetheory 7 holds regardless of the contexts Ki and Ks.”

14

The context-closure of a theory is traversable by construction:

(E'i) Es) \”\ T
V
a pair of sets of effects

Properties.

1. The context-closure of T extends 7

7 (ei, es, R) —x ((Ei, Es) I'7) (ei, es, R) Ks has no handler for

. an effectin Es
2. The context-closure of T is traversable by neutral contexts: \

traversable (Ki, Ks, ((Ei, Es){ T)) <& neutral(Ei, Ki) A neutral(Es, Ks)

Under a context-closed theory, the bind rule can be simplified as follows:
neutral (Ei, Ki) neutral (Es, Ks)

ei £ es ((Ei, Es)IM T) {yi, ys. Kilyi] = Ks[ys] ((Ei, Es){ T) {R}}
Derived Bind

Ki[ei] < Ks[es] ((Ei, Es) M T) {R}

15

Concurrency

We can now revisit the refinement between the two implementations of concurrency:

effect Fork : (unit -> unit) -> unit < main (fun f -> fork (f ()))
let g = Queue.create () 1in -
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ ->
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

16

Concurrency

We can now revisit the refinement between the two implementations of concurrency:

effect Fork : (unit -> unit) -> unit < main (fun f -> fork (f ()))
let g = Queue.create () 1in -
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ ->
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))
Key Steps. ([Forkl, [1) I\ FORK
1. Identify the theory to reason about the Fork effects: FORK(perform (Fork fi), fork (f:()), R)
> fi () < fs () (FORK) {True} * R((), ())

17

Concurrency

We can now revisit the refinement between the two implementations of concurrency:

effect Fork : (unit -> unit) -> unit < main (fun f -> fork (f ()))
let g = Queue.create () 1in -
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ ->
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))
Key Steps. ([Forkl, [1) I\ FORK
1. Identify the theory to reason about the Fork effects: FORK(perform (Fork fi), fork (f:()), R)
> fi () < fs () (FORK) {True} * R((), ())

2. Apply the exhaustion rule to decompose the proof

into a handler part and a handlee part: main (fun f -> perform (Fork f)) <
main (fun f -> fork (f ()))
(([Forkl, [1) M FORK) {True}

18

Concurrency

We can now revisit the refinement between the two implementations of concurrency:

effect Fork : (unit -> unit) -> unit < main (fun f -> fork (f ()))
let g = Queue.create () 1in -
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ ->
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))
Key Steps. ([Forkl, [1) I\ FORK
1. Identify the theory to reason about the Fork effects: FORK(perform (Fork fi), fork (f:()), R)
> fi () < fs () (FORK) {True} * R((), ())

2. Apply the exhaustion rule to decompose the proof

into a handler part and a handlee part: main (fun f -> perform (Fork f)) <
main (fun f -> fork (f ()))
3. Apply the bind rule to step through the (([Forkl, [1) M FORK) {True}

verification. 19

Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. i p es —xei < K[()] (T) {R}
Fork-R

ei < Ks[fork es] (7T) {R}

1 p» Kles]
VJ K.] =4 K'[es'] —k ei X es <J_> {V'i, e dvs’. j =4 K'[es'] * R(Vi, Vs')}

ei 3 es’ <T> {R}

1B Ks[es]
ei S es (L) {vi, vs. 1 B Ks[vs] =k Ki[vi] £ es"{T) {R}}

Logical-Fork
Ki[ei] < es’ {T) {R}

Thread-Swap

20

Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. i p es —xei < K[()] (T) {R}

Fork-R
ei < Ks[fork es] (7T) {R}
effect (Fork fi), ki -> h < Ks[fork (fs ())]

Thread-Swap

Logical-Fork

21

Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. i p es —xei < K[()] (T) {R}

Fork-R
ei < Ks[fork es] (7)) {R} | o _______ *

Thread-Swap

Logical-Fork

22

Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. 1 » es —xei < Ks[()] (T) {R}
Fork-R

ei < Ks[fork es] (7)) {R}
Queue.push ki gq; run fi < Ks[()]

1 p» Kles]
V] K.] =4 K'[es'] —k ei X es <J_> {V'i, e dvs’. j =4 K'[es'] * R(Vi, Vs')}

Thread-Swap
ei < es' <T> {R}

Logical-Fork

23

Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

ip e —xei £ Ks[()] 7T {R}

Ks[fork es] {7) {R}

J» KIKI[O1]

1 » Kles]
€s <J_> {V'i, _

LAvs’. § e K'[es”"] x R(vi, vs')}

. j B K[es’] —xei

es’ (T) {R}

Thread-Swap

Logical-Fork

24

Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. 1 » es —xei < Ks[()] (T) {R}
Fork-R

ei < Ks[fork es] (7)) {R}

1 p» Kles]
V] K.] =4 K'[es'] —k ei X es <J_> {V'i, e dvs’. j =4 K'[es'] * R(Vi, Vs')}

Thread-Swap
ei < es' <T> {R}

Logical-Fork

25

Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. 1 » es —xei < Ks[()] (T) {R}

Fork-R
ei < Ks[fork es] (7)) {R} | o el *

Thread-Swap

1B Ks[es]
ei < es <J_> {V'i, Vs. 1 B Ks[Vs]—* K'i[V-i] < es’ <7.> {R}}

Logical-Fork

Ki[ei] < es'{T) {R} 26

To verify the handler, we introduce novel reasoning rules for concurrency:

Concurrency

Vi. i » es —xei £ Ks[()] (T {R} j B K'[es]

Fork-R
continue ki () < es

ei < Ks[fork es] (7)) {R}

continue ki () < ()

1B Ks[es]
ei < es <J_> {V'i, Vs. 1 B Ks[Vs]—* K'i[V-i] < es’ <7.> {R}}

Logical-Fork
Ki[ei]l £ es’{T) {R}

Thread-Swap

27

To verify the handler, we introduce novel reasoning rules for concurrency:

Concurrency

Vi. 1 » es —xei < Ks[()] (T) {R}
Fork-R

ei < Ks[fork es] (T) {R} continue ki () < es

continue ki () < es

1B Ks[es]
ei < es <J_> {V'i, Vs. 1 B Ks[Vs]—* K'i[V-i] < es’ <7.> {R}}

Logical-Fork
Ki[ei]l £ es’{T) {R}

Thread-Swap

28

Conclusion

In This Talk. ®ROCQ
(Motivation) Importance of relational SL for program verification and reasoning (Fork).
(Challenge) The meaning of an effect depends on a handler.

(Key Idea) In baze (a logic build on top of Iris), the refinement relation is parameterised with a theory.
(Compositionality) baze allows one to reason about effects independently of the handler.
(Context-Local Reasoning) baze enjoys a powerful context-local reasoning principle.

(Concurrency) Refinement between handler-based and direct implementations of concurrency.
Introduction of novel rules in relational SL to reason about thread scheduling.

Conclusion

In This Talk. ®ROCQ
(Motivation) Importance of relational SL for program verification and reasoning (Fork).
(Challenge) The meaning of an effect depends on a handler.

(Key Idea) In baze (a logic build on top of Iris), the refinement relation is parameterised with a theory.
(Compositionality) baze allows one to reason about effects independently of the handler.
(Context-Local Reasoning) baze enjoys a powerful context-local reasoning principle.

(Concurrency) Refinement between handler-based and direct implementations of concurrency.
Introduction of novel rules in relational SL to reason about thread scheduling.

[

In the Paper (A Relational Separation Logic for Effect Handlers).

(Dynamic Effects) blaze, a logic for dynamic effects built on top of baze (a logic for static effects).
(Deep vs. Shallow) Support for both deep and shallow handlers.
(One-Shot vs. Multi-Shot) Support for both one-shot and multi-shot continuations.

(Case Studies) Refinement between asynchronous-programming libraries (Async & Awa-i t);
Handler-correctness criteria in blaze for algebraic effects (non-determinism).

https://devilhena-paulo.github.io/files/blaze.pdf

Acknowledgements

Thanks to everyone who contributed with comments on early versions of this talk:
Dragana Milovancevic, Raquel Sofia Silva, Simcha van Collem, Shing Hin Ho, Opale Sjostedt,
Carine Morel, Timéo Arnouts, Ines Wright, and Robbert Krebbers.

Thanks also to Amin Timany, who spotted a mistake in slide 15:
the slide incorrectly stated an equivalence (<) instead of a right-to-left implication (¢).

Concurrency - Backup

The complete set of the novel reasoning rules for concurrency:

1P es
ei < es (L) {True}
Ki[O)] < es’ {T) {R} Vi. i » es —xei < Ks[()] (T) {R}
Fork-L Fork-R
Ki[fork ei] < es’ {(T) {R} ei < Ks[fork es] (7)) {R}
1 p Kles]

VJ K.] =4 K'[es'] —k ei X es <J_> {V'i, e dvs’. j =4 K'[es'] * R(Vi, Vs')}
Thread-Swap

ei 3 es’ <T> {R}

1P Ks[es]

ei S es <J_> {V'i, Vs, 1 B Ks[Vs]—* K'i[Vi] < es’ <T> {R}}
Logical-Fork

Ki[ei] < es’ {T) {R}

Concurrency - Backup

Valid OCaml 5 implementation:

type _ Effect.t += Fork : (unit -> unit) -> unit t

let run main =
let g = Queue.create () 1in
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ >
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

Examples of Relational Theories - Backup

State.

GET(perform (Get ()), !r, R) = 3x. r»Y2x x (r» Y2 x —R(x, X))
SET(perform (Set y), r :=y, R) = re» > _ % (re> Yy —%R(v, v))

STATE = GET @ SET

re 2 x —perform (Get ()) < !r (STATE) {yi, ys. yi = ys = x * r» Y2 x}
. re 2y}
- S

re» 12 s perform (Set y) < r := vy {STATE) {_,

S

Non-Determinism (Selected Relations).

ASSOCi(eur or (ei2 or eis), (ea or ez) or ezs, R) =
[IR(e1w1, e2z) * [IR(e1w2, e2) * [IR(e1s, e2)

UNIT1(e1 or fa'i'L, e2, R) = DR(el, ez)

ND = ASSOCi @ UNIT1 @ ..

