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A relational separation logic allows an effect-handler-based implementation of concurrency
to be explained in terms of a direct implementation:

effect Fork : (unit -> unit) -> unit
let g = Queue.create () 1in
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k qg;
run f
| _ -
if not (Queue.empty q) then
let k = Queue.pop g in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))
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A relational separation logic allows an effect-handler-based implementation of concurrency
to be explained in terms of a direct implementation:

effect Fork : (unit -> unit) -> unit main (fun f -> fork (f ()))
let g = Queue.create () 1in
let rec run f =
match f () with
| effect (Fork f), k —>
Queue.push k q;
run f
| _ >
if not (Queue.empty q) then
let k = Queue.pop g in continue k ()

A

in
run (fun () => main (fun £ -> perform (Fork f)))

It formalises the intuition, that, under this handler, an effect Fork can be seen as fork itself:

perform (Fork f) < fork (f ())



The meaning of an effect depends on a handler.

1. Definition of the Refinement Relation.
The standard refinement relation does not specify the case of effects:
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2. Compositional Reasoning (Handler vs. Handlee).
How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
How to reason about a program independently of its evaluation context?
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Challenges

The meaning of an effect depends on a handler.

1. Definition of the Refinement Relation.
The standard refinement relation does not specify the case of effects:

»

ei < es {R} 2  “if eiterminates with value vi, then es terminates with a value vs s.t. R (vi, vs)

2. Compositional Reasoning (Handler vs. Handlee).
How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
How to reason about a program independently of its evaluation context?

ei < es {y'i, Vs. K1[y1:| < Ks[ys] {R}}

(Standard) Bind
K'i[ei] < Ks[es] {R}



The key idea is to extend the refinement relation with a parameterised relational theory,
an axiomatisation of relations that should hold:

ei £ es <T> {R}

The resulting logic is called baze; it is built on top of Iris.
A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

7 : (expr x expr x ((expr x expr) - iProp)) > 1iProp
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The key idea is to extend the refinement relation with a parameterised relational theory,
an axiomatisation of relations that should hold:

ei £ es <T> {R}

The resulting logic is called baze; it is built on top of Iris.
A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

7 : (expr x expr x ((expr x expr) - iProp)) > 1iProp

VT V V L
impl. spec. return condition precondition
(postcondition)

Examples. Concurrency effects.

FORK(perform (Fork fi), fork (fs ()), R) =
> fi () < fs () (FORK) {True} » R((), ())

> fi () £ fs () {FORK) {True} —x

perform (Fork fi) < fork (fs ()) (FORK) {yi, ys. yi = ys = ()} 11



Problem. The meaning of an effect depends on a handler.

Solution. (Biorthogonality) To universally quantify over contexts that validate a theory.

Under the hood, the parameterised refinement relation unfolds to a standard refinement
with ei and es under universally quantified contexts:

ei < es{7T)Y {R} 2 VKiKsS. (7T) {R} Ki £ Ks {S} —x Ki[ei] < Ks[es] {S}

Definition of the validation of a relational theory T by a pair of contexts:
(T) {R} Ki £ Ks {S} =

(Vvi vs. R(vi, vs) =k Ki[vi] < Ks[vs] {S})
A
(Vei’ es’. T ei’, es’, R) —x Ki[ei’'] £ Ks[es'] {S})
Y
%~ T(ei’, es’, R)

12



Challenge 2 - Compositional Reasoning (Handler vs. Handlee)

The exhaustion rule allows compositional reasoning about programs with effect handlers.

ei $ es {7T) {R}

(Vvi vs. R(vi, vs) =X Ki[vi] < Ks[vs] (F) {S})
A
(Vei” es’. T ei’, e, R) —xk Ki[ei’'] < Ks[es"] (F) {S})

Exhaustion

K'i[e'i] < Ks[es] (T} {S}

The rule allows one to see the theory 7 as a boundary between handlee and handler.

13



Challenge 3 - Context-Local Reasoning

The bind rule allows context-local reasoning:

traversable (Ki, Ks, 7)
ei < es {(7T) {yi, ys. Kilyi]l < Ks[ys] (7)) {R}}

Bind
Ki[ei] < Ks[es] (7 ) {R}

The contexts should be able to “traverse” the relational theory 7

traversable (Ki, Ks, 7) = “Thetheory 7 holds regardless of the contexts Ki and Ks.”

14



The context-closure of a theory is traversable by construction:

(E'i ) Es) \”\ T
_V_
a pair of sets of effects

Properties.

1. The context-closure of T extends 7

7 (ei, es, R) —x ((Ei, Es) I'7) (ei, es, R) Ks has no handler for

. an effectin Es
2. The context-closure of T is traversable by neutral contexts: \

traversable (Ki, Ks, ((Ei, Es){ T)) <& neutral(Ei, Ki) A neutral(Es, Ks)

Under a context-closed theory, the bind rule can be simplified as follows:
neutral (Ei, Ki) neutral (Es, Ks)

ei £ es ((Ei, Es)IM T) {yi, ys. Kilyi] = Ks[ys] ((Ei, Es){ T) {R}}
Derived Bind

Ki[ei] < Ks[es] ((Ei, Es) M T) {R}

15



Concurrency

We can now revisit the refinement between the two implementations of concurrency:

effect Fork : (unit -> unit) -> unit < main (fun f -> fork (f ()))
let g = Queue.create () 1in -
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ ->
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))
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Concurrency

We can now revisit the refinement between the two implementations of concurrency:

effect Fork : (unit -> unit) -> unit < main (fun f -> fork (f ()))
let g = Queue.create () 1in -
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ ->
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
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1. Identify the theory to reason about the Fork effects:  FORK(perform (Fork fi), fork (f:()), R)
> fi () < fs () (FORK) {True} * R((), ())

2. Apply the exhaustion rule to decompose the proof

into a handler part and a handlee part: main (fun f -> perform (Fork f)) <
main (fun f -> fork (f ()))
3. Apply the bind rule to step through the (([Forkl, [1) M FORK) {True}

verification. 19



Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. i p es —xei < K[()] (T) {R}
Fork-R

ei < Ks[fork es] (7T) {R}

1 p» Kles]
VJ K. ] =4 K'[es'] —k ei X es <J_> {V'i, e dvs’. j =4 K'[es'] * R(Vi, Vs')}

ei 3 es’ <T> {R}

1B Ks[es]
ei S es (L) {vi, vs. 1 B Ks[vs] =k Ki[vi] £ es"{T) {R}}

Logical-Fork
Ki[ei] < es’ {T) {R}

Thread-Swap

20
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Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:
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Concurrency

To verify the handler, we introduce novel reasoning rules for concurrency:

Vi. 1 » es —xei < Ks[()] (T) {R}

Fork-R
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To verify the handler, we introduce novel reasoning rules for concurrency:

Concurrency

Vi. i » es —xei £ Ks[()] (T {R} j B K'[es]

Fork-R
continue ki () < es

ei < Ks[fork es] (7)) {R}

continue ki () < ()
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To verify the handler, we introduce novel reasoning rules for concurrency:

Concurrency

Vi. 1 » es —xei < Ks[()] (T) {R}
Fork-R

ei < Ks[fork es] (T) {R} continue ki () < es

continue ki () < es

1B Ks[es]
ei < es <J_> {V'i, Vs. 1 B Ks[Vs]—* K'i[V-i] < es’ <7.> {R}}

Logical-Fork
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Thread-Swap
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Conclusion

In This Talk. ®ROCQ
(Motivation) Importance of relational SL for program verification and reasoning (Fork).
(Challenge) The meaning of an effect depends on a handler.

(Key Idea) In baze (a logic build on top of Iris), the refinement relation is parameterised with a theory.
(Compositionality) baze allows one to reason about effects independently of the handler.
(Context-Local Reasoning) baze enjoys a powerful context-local reasoning principle.

(Concurrency) Refinement between handler-based and direct implementations of concurrency.
Introduction of novel rules in relational SL to reason about thread scheduling.
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(Concurrency) Refinement between handler-based and direct implementations of concurrency.
Introduction of novel rules in relational SL to reason about thread scheduling.

[

In the Paper (A Relational Separation Logic for Effect Handlers).

(Dynamic Effects) blaze, a logic for dynamic effects built on top of baze (a logic for static effects).
(Deep vs. Shallow) Support for both deep and shallow handlers.
(One-Shot vs. Multi-Shot) Support for both one-shot and multi-shot continuations.

(Case Studies) Refinement between asynchronous-programming libraries (Async & Awa-i t);
Handler-correctness criteria in blaze for algebraic effects (non-determinism).


https://devilhena-paulo.github.io/files/blaze.pdf
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Concurrency - Backup

The complete set of the novel reasoning rules for concurrency:

1P es
ei < es (L) {True}
Ki[O)] < es’ {T) {R} Vi. i » es —xei < Ks[()] (T) {R}
Fork-L Fork-R
Ki[fork ei] < es’ {(T) {R} ei < Ks[fork es] (7)) {R}
1 p Kles]

VJ K. ] =4 K'[es'] —k ei X es <J_> {V'i, e dvs’. j =4 K'[es'] * R(Vi, Vs')}
Thread-Swap

ei 3 es’ <T> {R}

1P Ks[es]

ei S es <J_> {V'i, Vs, 1 B Ks[Vs]—* K'i[Vi] < es’ <T> {R}}
Logical-Fork

Ki[ei] < es’ {T) {R}



Concurrency - Backup

Valid OCaml 5 implementation:

type _ Effect.t += Fork : (unit -> unit) -> unit t

let run main =
let g = Queue.create () 1in
let rec run f =
match f () with
| effect (Fork f), k ->
Queue.push k q;
run f
| _ >
if not (Queue.empty q) then
let k = Queue.pop g 1in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))



Examples of Relational Theories - Backup

State.

GET(perform (Get ()), !r, R) = 3x. r»Y2x x (r» Y2 x —R(x, X))
SET(perform (Set y), r :=y, R) = re» > _ % (re> Yy —%R(v, v))

STATE = GET @ SET

re 2 x —perform (Get ()) < !r (STATE) {yi, ys. yi = ys = x * r» Y2 x}
. re 2y}
- S

re» 12 s perform (Set y) < r := vy {STATE) {_,

S

Non-Determinism (Selected Relations).

ASSOCi(eur or (ei2 or eis), (ea or ez) or ezs, R) =
[IR(e1w1, e2z) * [IR(e1w2, e2) * [IR(e1s, e2)

UNIT1(e1 or fa'i'L, e2, R) = DR(el, ez)

ND = ASSOCi @ UNIT1 @ ..



