
A Relational Separation Logic for
Effect Handlers

presented by Paulo Emílio de Vilhena
joint work with Simcha van Collem, Ines Wright, and Robbert Krebbers

on the 15th of January, 2026

Introduction

Goal. Design of a relational separation logic for effect handlers.

1

In short, a relational separation logic consists of
 an assertion language, to specify programs;
 and a set of proof rules, to verify programs compositionally.

ei ≾ es {R} ≜

The key feature is the refinement relation, to assert that es is a correct abstraction of ei:

Introduction

“if ei terminates with value vi, then es terminates with a value vs s.t. R(vi, vs)”

Goal. Design of a relational separation logic for effect handlers.

2

In short, a relational separation logic consists of
 an assertion language, to specify programs;
 and a set of proof rules, to verify programs compositionally.

ei ≾ es {R} ≜

The key feature is the refinement relation, to assert that es is a correct abstraction of ei:

Introduction

“if ei terminates with value vi, then es terminates with a value vs s.t. R(vi, vs)”

Applications.
● Program Verification & Program Reasoning.

 To specify and understand a program in terms of a simpler implementation.
● Compiler Optimisations.

 An optimisation is correct if the optimised program does not introduce behaviours.
● Type Systems.

 To show soundness and abstraction properties of type systems.

Goal. Design of a relational separation logic for effect handlers.

3

In short, a relational separation logic consists of
 an assertion language, to specify programs;
 and a set of proof rules, to verify programs compositionally.

ei ≾ es {R} ≜

The key feature is the refinement relation, to assert that es is a correct abstraction of ei:

Introduction

“if ei terminates with value vi, then es terminates with a value vs s.t. R(vi, vs)”

Applications.
● Program Verification & Program Reasoning.

 To specify and understand a program in terms of a simpler implementation.

● Type Systems.
 To show soundness and abstraction properties of type systems.

Goal. Design of a relational separation logic for effect handlers.

3

● Compiler Optimisations.
 An optimisation is correct if the optimised program does not introduce behaviours.

Example

effect Fork : (unit -> unit) -> unit
let q = Queue.create () in
let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

A relational separation logic allows an effect-handler-based implementation of concurrency
 to be explained in terms of a direct implementation:

4

Example

effect Fork : (unit -> unit) -> unit
let q = Queue.create () in
let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

main (fun f -> fork (f ()))
≾

A relational separation logic allows an effect-handler-based implementation of concurrency
 to be explained in terms of a direct implementation:

4

A relational separation logic allows an effect-handler-based implementation of concurrency
 to be explained in terms of a direct implementation:

Example

effect Fork : (unit -> unit) -> unit
let q = Queue.create () in
let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

main (fun f -> fork (f ()))

It formalises the intuition, that, under this handler, an effect Fork can be seen as fork itself:

≾perform (Fork f) fork (f ())
5

≾

Challenges

The meaning of an effect depends on a handler.

1. Definition of the Refinement Relation.
 The standard refinement relation does not specify the case of effects:

2. Compositional Reasoning (Handler vs. Handlee).
 How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
 How to reason about a program independently of its evaluation context?

ei ≾ es {R} ≜ “if ei terminates with value vi, then es terminates with a value vs s.t. R(vi, vs)”

6

Challenges

1. Definition of the Refinement Relation.
 The standard refinement relation does not specify the case of effects:

2. Compositional Reasoning (Handler vs. Handlee).
 How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
 How to reason about a program independently of its evaluation context?

ei ≾ es {R} ≜ “if ei terminates with value vi, then es terminates with a value vs s.t. R(vi, vs)”

6

The meaning of an effect depends on a handler.

Challenges

1. Definition of the Refinement Relation.
 The standard refinement relation does not specify the case of effects:

2. Compositional Reasoning (Handler vs. Handlee).
 How to reason about a program that performs effects independently of its handler?

3. Context-Local Reasoning.
 How to reason about a program independently of its evaluation context?

ei ≾ es {R} ≜ “if ei terminates with value vi, then es terminates with a value vs s.t. R(vi, vs)”

match main (fun f -> perform (Fork f)) with
| effect (Fork f), k -> h
| _ -> r

≾ main (fun f -> fork (f ()))

main (fun f -> perform (Fork f)) ≾
main (fun f -> fork (f ()))

Handler PartHandlee Part
7

The meaning of an effect depends on a handler.

Challenges

1. Definition of the Refinement Relation.
 The standard refinement relation does not specify the case of effects:

2. Compositional Reasoning (Handler vs. Handlee).
 How to reason about a program that performs effects independently of its handler?

ei ≾ es {R} ≜ “if ei terminates with value vi, then es terminates with a value vs s.t. R(vi, vs)”

3. Context-Local Reasoning.
 How to reason about a program independently of its evaluation context?

ei ≾ es {yi, ys. Ki[yi] ≾ Ks[ys] {R}}

Ki[ei] ≾ Ks[es] {R}
(Standard) Bind

8

The meaning of an effect depends on a handler.

Key Idea

ei ≾ es〈T 〉{R}

T : (expr ✕ expr ✕ ((expr ✕ expr) → iProp)) → iProp

The key idea is to extend the refinement relation with a parameterised relational theory,
 an axiomatisation of relations that should hold:

A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

impl. spec. return condition
(postcondition)

precondition

The resulting logic is called baze; it is built on top of Iris.

9

Key Idea

⊥(ei, es, R) = False

Examples. Empty theory.

ei ≾ es {R} ⇔ ei ≾ es〈⊥〉{R}

T : (expr ✕ expr ✕ ((expr ✕ expr) → iProp)) → iProp

A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

impl. spec. return condition
(postcondition)

precondition

The resulting logic is called baze; it is built on top of Iris.

ei ≾ es〈T 〉{R}

The key idea is to extend the refinement relation with a parameterised relational theory,
 an axiomatisation of relations that should hold:

10

Key Idea

Examples. Concurrency effects.

FORK(perform (Fork fi), fork (fs ()), R) =
 ▷ fi () ≾ fs ()〈FORK 〉{True} * R((), ())

▷ fi () ≾ fs ()〈FORK 〉{True}
perform (Fork fi) ≾ fork (fs ())〈FORK〉{yi, ys. yi = ys = ()}

T : (expr ✕ expr ✕ ((expr ✕ expr) → iProp)) → iProp

A relational theory is formalised in Iris as a set of admitted relations (on arbitrary expressions):

impl. spec. return condition
(postcondition)

precondition

The resulting logic is called baze; it is built on top of Iris.

ei ≾ es〈T 〉{R}

The key idea is to extend the refinement relation with a parameterised relational theory,
 an axiomatisation of relations that should hold:

11

Challenge 1 - Definition of the Refinement Relation in baze

ei ≾ es〈T 〉{R} ≜ ∀ Ki Ks S.〈T 〉{R} Ki ≾ Ks {S} Ki[ei] ≾ Ks[es] {S}

〈T 〉{R} Ki ≾ Ks {S} ≜

 (∀ vi vs. R(vi , vs) Ki[vi] ≾ Ks[vs] {S})
 ∧
 (∀ ei’ es’ . T 〈 ei’ , es’ , R〉 Ki[ei’] ≾ Ks[es’] {S})

Problem. The meaning of an effect depends on a handler.

Solution. (Biorthogonality) To universally quantify over contexts that validate a theory.

Under the hood, the parameterised refinement relation unfolds to a standard refinement
 with ei and es under universally quantified contexts:

Definition of the validation of a relational theory T by a pair of contexts:

≈ T (ei’ , es’ , R)
12

Challenge 2 - Compositional Reasoning (Handler vs. Handlee)

(∀ vi vs. R(vi , vs) Ki[vi] ≾ Ks[vs]〈F 〉{S})
 ∧
(∀ ei’ es’ . T 〈 ei’ , es’ , R〉 Ki[ei’] ≾ Ks[es’]〈F 〉{S})

ei ≾ es〈T 〉{R}

Ki[ei] ≾ Ks[es]〈F 〉{S}
Exhaustion

The exhaustion rule allows compositional reasoning about programs with effect handlers.

The rule allows one to see the theory T as a boundary between handlee and handler.

13

Challenge 3 - Context-Local Reasoning

ei ≾ es〈T 〉{yi, ys. Ki[yi] ≾ Ks[ys]〈T 〉{R}}

Ki[ei] ≾ Ks[es]〈T 〉{R}
Bind

The bind rule allows context-local reasoning:

The contexts should be able to “traverse” the relational theory T :

traversable(Ki, Ks, T) = “The theory T holds regardless of the contexts Ki and Ks.”

traversable(Ki, Ks, T)

14

Challenge 3 - Context-Local Reasoning

The context-closure of a theory is traversable by construction:
(Ei, Es) T

a pair of sets of effects

Properties.

T (ei, es, R) ((Ei, Es) T)(ei, es, R)
1. The context-closure of T extends T :

traversable(Ki, Ks, ((Ei, Es) T)) ⇐ neutral(Ei, Ki) ∧ neutral(Es, Ks)
2. The context-closure of T is traversable by neutral contexts:

ei ≾ es〈(Ei, Es) T 〉{yi, ys. Ki[yi] ≾ Ks[ys]〈(Ei, Es) T 〉{R}}

Ki[ei] ≾ Ks[es]〈(Ei, Es) T 〉{R}
Derived Bind

neutral(Es, Ks)neutral(Ei, Ki)

 Under a context-closed theory, the bind rule can be simplified as follows:

Ks has no handler for
an effect in Es

15

Concurrency

We can now revisit the refinement between the two implementations of concurrency:

16

effect Fork : (unit -> unit) -> unit
let q = Queue.create () in
let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

main (fun f -> fork (f ()))≾

a

Concurrency

effect Fork : (unit -> unit) -> unit
let q = Queue.create () in
let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

main (fun f -> fork (f ()))≾

Key Steps. ([Fork], []) FORK
1. Identify the theory to reason about the Fork effects:

We can now revisit the refinement between the two implementations of concurrency:

FORK(perform (Fork fi), fork (fs ()), R) =
 ▷ fi () ≾ fs ()〈FORK 〉{True} * R((), ())

17

Concurrency

Key Steps. ([Fork], []) FORK
1. Identify the theory to reason about the Fork effects:

We can now revisit the refinement between the two implementations of concurrency:

FORK(perform (Fork fi), fork (fs ()), R) =
 ▷ fi () ≾ fs ()〈FORK 〉{True} * R((), ())

2. Apply the exhaustion rule to decompose the proof
 into a handler part and a handlee part: main (fun f -> perform (Fork f)) ≾

main (fun f -> fork (f ()))
〈([Fork], []) FORK〉{True}

18

effect Fork : (unit -> unit) -> unit
let q = Queue.create () in
let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

main (fun f -> fork (f ()))≾

Concurrency

Key Steps. ([Fork], []) FORK
1. Identify the theory to reason about the Fork effects:

We can now revisit the refinement between the two implementations of concurrency:

FORK(perform (Fork fi), fork (fs ()), R) =
 ▷ fi () ≾ fs ()〈FORK 〉{True} * R((), ())

2. Apply the exhaustion rule to decompose the proof
 into a handler part and a handlee part: main (fun f -> perform (Fork f)) ≾

main (fun f -> fork (f ()))
〈([Fork], []) FORK〉{True}3. Apply the bind rule to step through the

 verification. 19

effect Fork : (unit -> unit) -> unit
let q = Queue.create () in
let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
in
run (fun () -> main (fun f -> perform (Fork f)))

main (fun f -> fork (f ()))≾

Concurrency

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

To verify the handler, we introduce novel reasoning rules for concurrency:

20

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

Concurrency

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

To verify the handler, we introduce novel reasoning rules for concurrency:

effect (Fork fi), ki -> h ≾ Ks[fork (fs ())]
*

21

Concurrency

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

To verify the handler, we introduce novel reasoning rules for concurrency:

h ≾ Ks[()]

i ⇒ fs ()
*

22

Concurrency

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

To verify the handler, we introduce novel reasoning rules for concurrency:

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

Queue.push ki q; run fi ≾ Ks[()]
*

i ⇒ fs ()

23

Concurrency

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

To verify the handler, we introduce novel reasoning rules for concurrency:

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

Queue.push ki q; run fi ≾ fs ()
*

j ⇒ K’ [Ks[()]]

24

Concurrency

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

To verify the handler, we introduce novel reasoning rules for concurrency:

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

run fi ≾ fs ()
*

25

Concurrency

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

To verify the handler, we introduce novel reasoning rules for concurrency:

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

let ki = Queue.pop q in continue ki () ≾ ()
*

26

Concurrency

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

To verify the handler, we introduce novel reasoning rules for concurrency:

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

continue ki () ≾ ()
*

j ⇒ K’ [es]
continue ki () ≾ es

27

Concurrency

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

To verify the handler, we introduce novel reasoning rules for concurrency:

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

continue ki () ≾ es

*
continue ki () ≾ es

28

Conclusion

In This Talk.
 (Motivation) Importance of relational SL for program verification and reasoning (Fork).
 (Challenge) The meaning of an effect depends on a handler.

 (Key Idea) In baze (a logic build on top of Iris), the refinement relation is parameterised with a theory.
 (Compositionality) baze allows one to reason about effects independently of the handler.
 (Context-Local Reasoning) baze enjoys a powerful context-local reasoning principle.

 (Concurrency) Refinement between handler-based and direct implementations of concurrency.
 Introduction of novel rules in relational SL to reason about thread scheduling.

Conclusion

In This Talk.

In the Paper (A Relational Separation Logic for Effect Handlers).

 (Motivation) Importance of relational SL for program verification and reasoning (Fork).
 (Challenge) The meaning of an effect depends on a handler.

 (Key Idea) In baze (a logic build on top of Iris), the refinement relation is parameterised with a theory.
 (Compositionality) baze allows one to reason about effects independently of the handler.
 (Context-Local Reasoning) baze enjoys a powerful context-local reasoning principle.

 (Concurrency) Refinement between handler-based and direct implementations of concurrency.
 Introduction of novel rules in relational SL to reason about thread scheduling.

 (Dynamic Effects) blaze, a logic for dynamic effects built on top of baze (a logic for static effects).
 (Deep vs. Shallow) Support for both deep and shallow handlers.
 (One-Shot vs. Multi-Shot) Support for both one-shot and multi-shot continuations.

 (Case Studies) Refinement between asynchronous-programming libraries (Async & Await);
 Handler-correctness criteria in blaze for algebraic effects (non-determinism).

https://devilhena-paulo.github.io/files/blaze.pdf

Acknowledgements

Thanks to everyone who contributed with comments on early versions of this talk:
 Dragana Milovancevic, Raquel Sofia Silva, Simcha van Collem, Shing Hin Ho, Opale Sjöstedt,
 Carine Morel, Timéo Arnouts, Ines Wright, and Robbert Krebbers.

Thanks also to Amin Timany, who spotted a mistake in slide 15:
 the slide incorrectly stated an equivalence (⇔) instead of a right-to-left implication (⇐).

i ⇒ es

ei ≾ es〈⊥〉{True}
Ki[()] ≾ es’〈T 〉{R}

Ki[fork ei] ≾ es’〈T 〉{R}
Fork-L

Concurrency - Backup

∀i. i ⇒ es ei ≾ Ks[()]〈T 〉{R}

ei ≾ Ks[fork es]〈T 〉{R}
Fork-R

The complete set of the novel reasoning rules for concurrency:

i ⇒ Ks[es]
ei ≾ es〈⊥〉{vi, vs. i ⇒ Ks[vs] Ki[vi] ≾ es’〈T 〉{R}}

Ki[ei] ≾ es’〈T 〉{R}
Logical-Fork

i ⇒ K[es]
∀j K’ . j ⇒ K’ [es’] ei ≾ es〈⊥〉{vi, _. ∃vs’ . j ⇒ K’ [es’] * R(vi, vs’)}

ei ≾ es’〈T 〉{R}
Thread-Swap

type _ Effect.t += Fork : (unit -> unit) -> unit t

let run main =
 let q = Queue.create () in
 let rec run f =
 match f () with
 | effect (Fork f), k ->
 Queue.push k q;
 run f
 | _ ->
 if not (Queue.empty q) then
 let k = Queue.pop q in continue k ()
 in
 run (fun () -> main (fun f -> perform (Fork f)))

Concurrency - Backup

Valid OCaml 5 implementation:

Examples of Relational Theories - Backup

GET(perform (Get ()), !r, R) = ∃x. r ↦s
1/2 x * (r ↦s

1/2 x R(x, x))

r ↦s
1/2 x perform (Get ()) ≾ !r〈STATE〉{yi, ys. yi = ys = x * r ↦s

1/2 x}

SET(perform (Set y), r := y, R) = r ↦s
1/2 _ * (r ↦s

1/2 y R(v, v))
STATE = GET ⊕ SET

r ↦s
1/2 _ perform (Set y) ≾ r := y〈STATE〉{_, _. r ↦s

1/2 y}

State.

ASSOC1(e11 or (e12 or e13), (e21 or e22) or e23, R) =
 ☐R(e11, e21) * ☐R(e12, e22) * ☐R(e13, e23)

Non-Determinism (Selected Relations).

UNIT1(e1 or fail, e2, R) = ☐R(e1, e2)

ND = ASSOC1 ⊕ UNIT1 ⊕ …

