A Relational Separation Logic for Effect Handlers

PAULO EMILIO DE VILHENA, Imperial College London, United Kingdom
SIMCHA VAN COLLEM, Radboud University, The Netherlands

INES WRIGHT, Aarhus University, Denmark

ROBBERT KREBBERS, Radboud University, The Netherlands

Effect handlers offer a powerful and relatively simple mechanism for controlling a program’s flow of execution.
Since their introduction, an impressive array of verification tools for effect handlers has been developed.
However, to this day, no framework can express and prove relational properties about programs that use
effect handlers in languages such as OCaml and Links, where programming features like mutable state and
concurrency are readily available. To this end, we introduce blaze, the first relational separation logic for effect
handlers. We build blaze on top of the Iris framework for concurrent separation logic in Rocq, thereby enjoying
the rigour of a mechanised theory and all the reasoning properties of a modern fully-fledged concurrent
separation logic, such as modular reasoning about stateful concurrent programs and the ability to introduce
user-defined ghost state. In addition to familiar reasoning rules, such as the bind rule and the frame rule,
blaze offers rules to reason modularly about programs that perform and handle effects. Significantly, when
verifying that two programs are related, blaze does not require that effects and handlers from one program be
in correspondence with effects and handlers from the other. To assess this flexibility, we conduct a number
of case studies: most noticeably, we show how different implementations of an asynchronous-programming
library using effects are related to truly concurrent implementations. As side contributions, we introduce
two new, simple, and general reasoning rules for concurrent relational separation logic that are independent
of effects: a logical-fork rule that allows one to reason about an arbitrary program phrase as if it had been
spawned as a thread and a thread-swap rule that allows one to reason about how threads are scheduled.

1 Introduction

Effect handlers [Plotkin and Pretnar 2009] are a powerful programming abstraction that separates
the use of an effect from its implementation, allowing programmers to write effectful code indepen-
dently of how these effects are implemented. Its programming interface offers the ability to perform
and to handle effects. Performing an effect is similar to raising an exception: execution is suspended
and control is transferred to an enclosing pre-installed handler. Handling an effect is also similar to
handling an exception with the key difference that, in addition to the effect’s payload, the effect
handler also has access to a first-class representation of the suspended program, a continuation.
When invoked, the continuation resumes the suspended program, but, as a first-class value, the
continuation can also be discarded or stored in memory to be invoked later.

The ability to suspend and resume programs can be used to implement interesting features such
as coroutines [de Moura and Ierusalimschy 2009] and promise-style asynchronous-programming
libraries [Dolan et al. 2017]. However, the ability to manipulate continuations is also dangerous. A
continuation can capture resources. It may also contain code that must eventually be called to free
up these resources. So, if the continuation is discarded, if it becomes unreachable, or if, for some
other reason, it is not invoked, then some resources may never be released. Users of effect handlers
must also make sure that the operation of performing an effect is always enclosed by a handler,
otherwise, like an uncaught exception, an unhandled effect would cause a runtime error. For these
reasons, effect handlers are widely seen as an advanced programming feature to be used with care.

Authors’ Contact Information: Paulo Emilio de Vilhena, p.de-vilhena@imperial.ac.uk, Imperial College London, London,
United Kingdom; Simcha Van Collem, simcha.vancollem@ru.nl, Radboud University, Nijmegen, The Netherlands; Ines
Wright, Aarhus University, Aarhus, Denmark; Robbert Krebbers, mail@robbertkrebbers.nl, Radboud University, Nijmegen,
The Netherlands.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

HTTPS://ORCID.ORG/0000-0001-7379-310X
HTTPS://ORCID.ORG/0009-0006-8985-6156
HTTPS://ORCID.ORG/0000-0002-1185-5237
https://orcid.org/0000-0001-7379-310X
https://orcid.org/0009-0006-8985-6156
https://orcid.org/0009-0006-8985-6156
https://orcid.org/0000-0002-1185-5237

111:2 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

An impressive range of tools to help programmers to reason about programs with effect handlers
and to avoid these programming errors has been introduced. Programming languages such as
Koka [Leijen 2014], Links [Cooper et al. 2006; Hillerstrom and Lindley 2016] and Effekt [Brachthauser
et al. 2020], for example, have type systems that statically ensure effect safety: unhandled effects are
statically ruled out. Multiple other type systems with similar guarantees, covering a comprehensive
portion of the design space of handlers, can be found in the literature [Bauer and Pretnar 2014;
Biernacki et al. 2018, 2019, 2020; Brady 2013; de Vilhena and Pottier 2023; Kiselyov and Ishii 2015;
Lindley et al. 2017; Tang et al. 2024, 2025; van Rooij and Krebbers 2025; Zhang and Myers 2019].

In this paper, we are interested in expressing and verifying relational properties of programs
with handlers, namely program refinement and program equivalence. These relational properties
have several interesting applications. One could specify a complex but efficient algorithm or data
structure in terms of a simple but inefficient counterpart, or express the correctness condition of
linearizability for concurrent programs using program refinement [Filipovic et al. 2010]. Relational
reasoning also plays a key role in compiler verification [Allain et al. 2025; Giher et al. 2022].

The study of relational properties of programs with effect handlers is not new. Building on a logic
to reason about equality of programs using effects described by an algebraic theory [Plotkin and
Pretnar 2008], Plotkin and Pretnar [2013] introduce the notion of correctness of an effect handler as
a relational property: the handler implementation must validate the equations of the corresponding
algebraic theory. This seminal work has spawned a fertile investigation of relational logics for
effect handlers [McLaughlin 2020; Simpson and Voorneveld 2019].

In prior work, relational reasoning is limited to a strictly functional setting deprived of built-in
imperative features. To verify the correctness of a handler implementation that makes use of
imperative features such as mutable state, the algebraic approach of Plotkin and Pretnar [2013]
requires the user to parameterize the correctness statement with an algebraic theory of state.
Although denotational models for ground store [Kammar et al. 2017] (that is, store where cells can
hold integers, pairs, sums, and references to other cells, but not functions or continuations) and
for concurrency under similarly restricted forms of state exist, to our knowledge, ground store
and, consequently, unrestricted higher-order store still lack an algebraic treatment. This limitation
precludes the application of previous relational-reasoning approaches to programming languages
like Links and OCaml, which, in addition to user-defined effects and handlers, have ready support
for heap-allocated mutable state. The ability to store continuations on the heap is crucial in the
effect-handler-based implementations of asynchronous-programming libraries that we study in this
paper (§5.1). Moreover, although user-defined effects and handlers offer a modular basis for effectful
programming, it is often the case that the handler-based implementation of an effect is obscured by
the combination of advanced programming patterns, whereas its handler-free implementation can
be derived directly using imperative features. Therefore, from a reasoning perspective, it is desirable
to establish a formal statement relating a user-defined effect to its imperative counterpart. For
example, can the the operation perform Fork task, which performs the user-defined effect Fork,
be seen as the operation fork (task()), which directly spawns a new thread?

To overcome these limitations and address this question, we introduce blaze, the first relational
logic for a language supporting effect handlers, heap-allocated state, and primitive concurrency
and also the first relational separation logic for effect handlers. We build blaze on top of the Iris
framework [Jung et al. 2016, 2018, 2015; Krebbers et al. 2018, 2017a,b] in the Rocq prover [The
Rocq Prover development team 2025], thus providing users with the comfort of a proof assistant,
the confidence of a mechanised theory, and the expressiveness of Iris, a modern higher-order
concurrent separation logic with powerful features such as support for higher-order functions,
user-defined ghost state, and invariants.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:3

The blaze logic in a nutshell. The refinement relation e; 5 e, (7°) {R} of blaze informally states that
either e; diverges, or both e; and e, terminate with values v; and v, that satisfy the postcondition R.
The key ingredient is the parameter 7-, which specifies the relational theory under which the
refinement holds. This notion is inspired by Biernacki et al. [2018], but, whereas they use pure
(step-indexed) logic to express relational theories, we use separation logic, and, whereas they reason
at the level of a transparent logical interpretation of types, we rely on abstract reasoning rules
to manipulate an opaque notion of refinement. The novelty of blaze therefore does not lie in the
construction of its model, which follows Biernacki et al. [2018], but on the design of reasoning rules
that allow the relational verification of handlers at a high level of abstraction hiding any model-
specific details from the user of the logic. Moreover, by building this logic on top of separation
logic, we are able to express relational properties that involve primitive effects of the language and
that are conditional on the ownership of locations in the heap or on Iris-style ghost state.!

Using relational theories we can relate user-defined effects to other user-defined effects, or relate
user-defined effects to the native imperative features of the language. Concrete examples include:

(1) Relating the state effect to the composition of reader and writer effects.

(2) Relating the state effect effect to primitive load and store operations (§2).

(3) Relating a handler-based implementation of concurrency to true concurrency (§5.1).

(4) Expressing algebraic laws, for example that the non-deterministic choice operator (either
implemented using a handler that collects a list of results or implemented using concurrency)
satisfies monoid laws (§5.2).

Biernacki et al. [2018, §4.2] already support (1). We port their result to blaze as part of our
Rocq formalisation [de Vilhena et al. 2026]. More crucially, by using separation logic to formulate
our relational theories, blaze also supports (2) and (3). Another application of blaze is (4), which
enables the formulation of a handler-correctness criterion in the style of Plotkin and Pretnar
[2013]. Expressing handler correctness in this style is novel in the context of higher-order state
and primitive concurrency. However, unlike Plotkin and Pretnar [2013]’s algebraic theories, we
note that algebraic theories expressed in blaze are not transitive due to a known limitation of
step-indexed relational logics [Birkedal and Bizjak 2012; Hur et al. 2012].

We give a semantics to the refinement relation e; 5 e, (7°) {R} using an interpretation in Iris.
At the basis, we use Iris’s weakest precondition assertion to define observational refinement in the
same way as ReLoC [Frumin et al. 2021, §7.1]. Then, taking inspiration from Pitts and Stark [1999]’s
biorthogonality technique (used for the first time by Biernacki et al. [2018] in the context of effect
handlers) we define refinement, mutually inductively with two other relations, using Iris’s guarded
fixpoint operator.

While this layering of definitions makes it possible to bootstrap blaze, it also makes it infeasible
to carry out refinement proofs directly by unfolding these definitions, let alone carry out these
proofs in a compositional manner. We therefore take inspiration from ReLoC [Frumin et al. 2018,
2021] and Simuliris [Allain et al. 2025; Gaher et al. 2022] to develop a relational logic with a range
of high-level reasoning principles that abstract over the details of these definitions. Our high-level
logic provides a number of novel features:

(1) Our novel introduction and exhaustion rules make it possible to abstractly manipulate a
relational theory 7. If 7~ contains a relation between e; and e,, then the introduction rule
allows us to prove e; < e, (7) {R}. The exhaustion rule allows us to eliminate the dependency
on a theory 7, provided that the relations included in 7 are correctly handled.

1 Adding support for primitive effects, particularly concurrency, in a relational separation logic is not as straightforward as

it may sound. Our proof rules for state directly follow ReLoC [Frumin et al. 2021]. However, as we discuss in §5.1.1, such an
approach does not go as smoothly for concurrency. We instead design original rules for reasoning about concurrency.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

(2) The bind rule makes it possible to focus on a subexpression and then continue with the
verification of the whole expression in which the subexpression is replaced with a value. It is
well known that, in the context of logics for effect handlers, a restriction on the bind rule is
necessary for soundness. We develop a new restriction that requires the bound contexts to
be traversable with respect to the relational theory 7. This flexibility is crucial to support
dynamic effects labels.

We show the versatility of our approach through various extensions. We add support for dynamic
labels in the style of OCaml’s let exception construct, following de Vilhena and Pottier [2023].
Moreover, we add support for both one-shot and multi-shot continuations, taking inspiration
from van Rooij and Krebbers [2025]. Finally, as a side contribution needed to carry out some of our
case studies, we introduce new relational rules for concurrency. These rules are independent of
effect handlers and hold in any Iris-style relational logic such as ReLoC [Frumin et al. 2018, 2021].

Contributions. In sum, our contributions are the following:

(1) Novel relational logic. We introduce blaze, the first relational separation logic for handlers.

(2) Case studies. We conduct several challenging case studies including the verification that
multiple effect-handler-based implementations of concurrency refine truly concurrent ones.

(3) Novel reasoning rules. Our case studies led us to discover novel, simple, and general
reasoning rules in relational concurrent separation logic that are independent of handlers.

(4) Correctness with respect to algebraic theories. We show how the correctness of an effect
handler with respect to an algebraic theory can be stated and proved in blaze.

(5) Mechanised theory. We mechanise all our results, including soundness, in the Rocq prover.

2 Overview

In this section, we discuss the main challenges in designing a relational separation logic with
support for effect handlers. Our goal is to informally explain how blaze handles these challenges.
The examples are written in A-blaze, a calculus whose syntax and semantics we explain in §3.
In this section, we assume familiarity with functional programming and effect handlers. For the
unaccustomed reader, Pretnar [2015] provides a tutorial introduction to effect handlers.

Let us start by considering the following example:

countdown = fun timer.
timer.set 10; while (timer.get() >0) {timer.set (timer.get() -1)}

The function countdown receives an object timer as an argument with two fields, get and set. It
assumes these fields implement the functionality to respectively access and update timer’s memory.
It uses this functionality to update the timer from 10 to @ through decrements of 1.

The definition of countdown is modular on the implementation of the timer. In a language
with effect handlers, the programmer can exploit this generality by implementing get and set
as user-defined effects and providing different handlers to customise the implementation of the
effects performed by get and set. For example, assuming an effect $Timer is available, a generic
implementation of get and set can be obtained as follows:

A

timer = {get = fun_. perform $Timer (inl ()); set = funy. perform $Timer (inry)}

In this definition, the operations get and set simply perform the effect $Timer. They use left
and right injections inl and inr to distinguish between a request sent by get and a request sent
by set. A $Timer handler eventually assigns meaning to get and set by replying to these requests.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:5

Here are two possible instances of such handlers:

run_st_passing = fun main. run_heap = fun main.
let run = fun (). letr =refo in
handle main() with handle main() with
| effect $Timer request, k = funx. | effect $Timer request, k =
match request with match request with
linl) = kxx linl) = k(!r)
linry=kQy linry=r«y; kO
ly= fun_.y ly=y
inrun() 0

Both receive a piece of client code main that performs $Timer effects. The function run_st_passing
installs a handler that interprets $Timer effects in state-passing style, whereby the computation is
transformed into a function that takes the current state of the timer and outputs the timer’s final
state. In contrast, the function run_heap interprets $Timer effects by storing the current state of
the timer in a local reference r. This implementation is arguably simpler than the state-passing
implementation of run_st_passing although presumably they implement the same functionality.

This observation motivates a key question: is it possible to show that run_st_passing is a refine-
ment of run_heap? That is, can run_heap be used as a specification of run_st_passing and, therefore,
as a reference implementation of get and set?

The notion of refinement is formalised in relational logics as the relation e; < e, {R}, where ¢;
and e, are expressions and the postcondition R is a relation on values. We refer to e; as the expression
on the implementation side and to e, as the expression on the specification side. The refinement
relation informally states that either e; diverges or both e; and e, terminate with outputs v; and v,
such that R(v;, v,) holds, capturing the intuition that e; implements the same functionality described
by e,, because, informally, every output of e; corresponds to an output of e, related by R.

The question can thus be reformulated as how to establish a refinement between run_st_passing
and run_heap, such as the statement

where impl,
and impl,

run_st_passing (fun (). countdown timer)
run_heap (fun (). countdown timer),

1)

> 1>

imply, 3 imply {y1yr- y1 = yr }»

expressing the property that impl, and impl, have the same outputs.

To our knowledge, there are no relational logics with support for effect handlers and heap-
allocated mutable state and therefore no logics where such a relation can be derived. Addressing
this gap, we introduce blaze, the first relational separation logic with support for handlers. The
choice of a separation logic enables modular reasoning about state-manipulating programs such
as run_heap. The following subsections explain other interesting and novel aspects of blaze.

2.1 Modular reasoning about effects: handler versus handlee

In blaze, it is possible to state and prove Refinement 1. In fact, this refinement can be established in
a compositional way, whereby the proof is split into two parts: a proof that the handlers installed
by run_st_passing and run_heap are related and a proof that the handlees monitored by these
handlers are related. In the current example, this creates the following two subgoals:

?
countdown timer < countdown timer (2)
?
Vmain;, main,. main;() < main, () — run_st_passing main; S run_heap main, {=} 3)
Refinement 2 relates the handlees and Refinement 3 relates run_st_passing and run_heap under

>

the assumption they receive related arguments. For brevity, we write “=” in Refinement 3 for the
? . .
postcondition y; y,. y; = y,. Moreover, we use 3 to denote a notion of refinement that is yet to be

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

defined. Recall that the informal reading of countdown timer < _{_} states countdown timer either
diverges or terminates with a value. This standard notion of refinement _ < _{_} is therefore
insufficient, because, without a handler, the program countdown timer performs unhandled effects.

This limitation reveals a key challenge: to reason about the handlee independently of the handler,
it is necessary to generalise the standard notion of refinement to account for unhandled effects.

The blaze logic solves this challenge by parameterising the refinement relation with a relational
theory. A relational theory can be seen as a set of assumed refinements. Concretely, it is defined as a
set of triples (e;, e,, Q), where e; and e, are expressions and Q is a relation on pairs of expressions
called the return condition. In short, the return condition describes the condition under which e;
and e, can return. For example, the return condition y; y,. y; = y, states e; and e, can return only
when they terminate with the same values. In this case, the return condition Q can be seen as a
postcondition. The reading of (e;, e,, Q) then simply states that e; refines e, with postcondition Q.
For the purposes of this section, this first approximation is enough.

The general refinement relation in blaze has the form e; < e, (7)) {R}, where 7 is the parame-
terised relational theory. When a relational theory is empty, we write ¢; < e, {R} which has the
same informal meaning as before. The informal reading of the general relation ¢; < e, (7°) {R} is
that K;[e;] < K, [e,] {R} holds for every pair of contexts K; and K, that validate the theory 7. A
pair of contexts K; and K, validate 7 when the refinements included in 7~ hold under K; and K,;
that is, if 7~ includes the relation between two expressions e; and e,, then K;[e;] refines K, [e,]. This
general notion of refinement allows us to reason about programs e; and e, that perform unhandled
effects, because, when 7~ is well-chosen, the contexts K; and K, that validate 7 are precisely those
that handle the effects performed by e; and e,. At the same time, the contexts K; and K, appear
only in the definition of ¢; < e, (7°) {R}, which, during a verification task, need not be unfolded.
The theory 7~ can thus be seen as a logical abstraction of the contexts under wh)ich e; and e, occur.

In the running example of Refinements 2 and 3, it is now possible to substitute < with a refinement
relation parameterised by a relational theory, say Timer g

3S % _x_(Timerep) {=}

There are two minimal requirements for the relational theory Timerp: (1) Timer,q must include
sufficiently many relations so that countdown timer 3 countdown timer (Timer) {=} holds and
(2) Timer e, must be sufficiently small so that run_st_passing main; < run_heap main, {=} holds
under the assumption that main; () < main, () (Timer,) {=} holds. A choice of Timer,. that
satisfies both requirements is one that includes only the following refinement:

Vo. perform $Timer v < perform $Timer o (Timer,q) {=} (4)

This is sufficient to prove countdown timer 3 countdown timer (Timerq) {=}, because, as the
two expressions in this relation are same, every $Timer effect on one side corresponds to exactly
one $Timer effect on the other side. Therefore, when reasoning about performing an effect, it
suffices to apply Refinement 4 to conclude that, in both expressions, the results are the same.

Moreover, because Timer . includes only Refinement 4, it follows that, if e; < e, (Timer,) {=}
holds for arbitrary expressions e; and e,, then it must be the case that every $Timer effect in ¢
corresponds to exactly one $Timer effect in e,. This assumption can be exploited by the proof
of run_st_passing main; < run_heap main, {=} to establish the relation between the two handlers.

2.2 Flexible reasoning: handler-based versus handler-free implementations

One of the motivations to establish the refinement between run_st_passing and run_heap is
that run_heap provides a simpler and more direct implementation of the timer when compared to
the state-passing implementation of run_st_passing. However, run_heap does not exploit non-trivial

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:7

functionalities of effect handlers as the effect branch always immediately resumes the continuation.
This observation permits an implementation of the timer without effects:

ref_timer = funr.{get=fun(). !r; set = funy.r « y3}
The question now is: can the refinement
impl; < imply {=}, where impl, £ letr =ref@ in countdown (ref timerr), (5)

be established in blaze? Moreover, if possible, can the proof be done in a compositional way like in

the previous example, where reasoning about handlee and handler are carried out independently?
The answers to both questions are positive: the refinement can be established in blaze with a

compositional proof Indeed, the proof of impl; < impl, {=} is split into two subgoals:

Vet '—>s 0 — countdown timer < countdown (ref_timer ¢) (Tlmerspec) {=} (6)
Ve, mainy, e,. £ ros @ — main () < ey (Tlmersp“) {=} — run_st_passing main; S e, {=} (7)

Refinement 6 relates the handlee countdown timer to countdown (ref_timer ¢) under the the-
ory Tlmerspec, which we introduce shortly. Refinement 7 is stated in an interesting way. It re-
lates run_st_passing mainy to an arbitrary expression e;. Intuitively, the expression represents the
program countdown (ref_timer), but, thanks to the theory szerspec, this specific program can be
entirely abstracted: all the information needed to carry out Refinement 7 is that main; refines e,
under szerspec

The variable ¢ stands for the location to which r (in impl,) is bound. As usual in relational
separation logics, each of the two programs in a refinement relation manipulates its own heap.
The points-to predicate _ +— _ describes the state of the heap of the program on the specification
side, whereas _ +; _ describes the state of the heap on the implementation side. The fraction
that appears on top of —¢ represents a fractional ownership of ¢: it grants read-only permission
to £. Full ownership can be retrieved by combining two ¢ 3. _ assertions. In the proof of 5,
fractional assertions ¢ |1£>S _ are given to both the handlee and the handler. Full ownership is
therefore retrieved when the handlee performs an effect and ownership of the handlee’s fractional
assertion £ 5 _is temporarily transferred to the handler until the handlee is resumed.

Like Timer ., the theory szerspec must fulfil two requirements: (1) the theory must be suf-
ficiently relaxed so that 6 can be established and (2) it must be sufficiently small so that the
terms main; () and e, in 7 are tightly related. The first requirement now seems particularly chal-
lenging because Refinement 6 relates an effectful program to a non-effectful one. Fortunately,
relational theories are not limited to relations between only effectful expressions like in Timer .
They can in fact express relations between arbitrary expressions. Taking advantage of this flexibility,
the TlmerspeC includes a relation between the effectful implementation of get and set fields of timer
and their heap-manipulating counterparts of ref _timer:

Vx. 1[/2'12)5 x — perform $Timer (inl ()) < !E(Timerﬁpec) {yiyr-yi=yr=x = ¢ L%zx} (8)
Vy. £ +5s _ — perform $Timer (inry) 5 ¢ « y(Timery,) {y1yr- yr =yr = O * £ sy} (9)

From the perspective of the handlee, these relations guarantee that performing the effect $Timer
is similar to manipulating the memory location /.

2.3 Context-local relational reasoning

A closer look at Refinements 8 and 9 reveals an important limitation. They apply only to pairs of
programs e; and e, where ¢; consists precisely of a single $Timer effect and e, consists precisely
of a single read or store operation. As such, they are insufficient to establish 6, because the calls
to get and set in countdown timer and in countdown (ref_timer £) occur in the context of a larger
program, not as single operations.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

The key missing principle to address this limitation is the bind rule. The bind rule allows the user
to reason about a piece of code independently of the context under which this code is eventually
executed. In standard relational logics, the bind rule is formally stated as follows:

STANDARD-BIND ¢ S e {y1yr. Ki[y1] 3 Kr[yr] {R}} + Ki[er] 3 K [er] {R}

This rule is sound in blaze, but insufficient because it assumes the parameterised theory is empty.
A natural fix would be to decorate every occurrence of the refinement relation with a theory 7

UNSOUND-BIND ¢} S eI {yryr-Kilyrh S Kelyr KR+ Kiler} s Krler KT R}

The resulting rule is unsound. To see why;, it suffices to consider the following counterexample,
where the effect $Id is assumed to be available:

ewrue = handle (perform $Id true) witheffect $Idx, k =>kx|y=y

If we further assume there is a theory Neq that includes the refinement Vb € Bool. perform $Id b <
perform $Id b (Neq) {#}, then, using unsounD-BIND with both K; and K, instantiated as the $Id
handler, it is possible to establish the refinement e;.,e < ;4 (Neq) {#}, which is false, because both
sides of the refinement terminate with true.

This counterexample suggests that to enable sound context-local reasoning, there must be some
restriction on the evaluation contexts K; and K. In particular, the rule should not be applicable
when the contexts K; and K, contain handlers for the effects described by the theory 7. In blaze, a
sound bind rule integrating these restrictions is formulated as follows:

traversable(K;, K, T") TCF
er s e (T) {yryr- Kilui] < K [yr] (F) {R}}

The rule is applicable when there exists a theory 7~ included in ¥, such that traversable(Kj, Ky, 7°)
holds. The predicate traversable(Kj, K,, T°) intuitively states that K; and K, do not conflict with 77,
or, visually, that 7 can traverse K; and K, . It is defined in an abstract way with no reference to the
handlers in K; and K. In the case of Timer,, it is possible to show this predicate holds for any
contexts K; and K, that contain no $Timer handler. In the case of Timer'spec, the predicate holds for
any Kj that contains no $Timer handler. No condition is imposed on K, in this case, because the
expressions on the right-hand side of Refinements 8 and 9 do not perform effects. The blaze logic
therefore enjoys a powerful context-local reasoning principle that is adjustable to the parameterised
theory. As we are going to show in §4.2, this principle is especially important to support reasoning
in the presence of multiple effect names.

BIND F Kiler] s Krler] (F) {R}

3 Language

We introduce A-blaze, an untyped calculus with formally defined syntax and semantics. The language
has support for heap-allocated mutable state and concurrency, both deep and shallow handlers,
both one-shot and multi-shot continuations, and dynamically allocated effect names. For most of
the paper, only deep handlers that capture multi-shot continuations are used. So, for the sake of
conciseness, we postpone the introduction of the syntax and semantics of one-shot continuations
to §4.3, where we explain the extension of the logic with support for this feature.

3.1 Syntax

Figure 1a shows the syntax of expressions, values, and evaluation contexts. The definition of
evaluation contexts reflects a right-to-left evaluation order. Every node in the syntax tree of an
evaluation context K contains exactly one child, except for the empty context which contains none.
Thanks to this observation, a context K can be seen as a list whose elements, called frames, are the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:9

ex=v|x|ee|letx=eine vi=()|recfx.e| (v,v) || kont K
| leteffectE ine|performne K:=[]|eK|Kv
handle e with | letx=Kine|letx=0inkK
| leffectpx, k=e handle K with
ly=e | |effect $SEx, k= e
| refe|le|le < e|forke ly=e
nu=E|$E | perform$EK |refK|!K|e«— K|K «wv

(a) Syntax of expressions, values, and evaluation contexts. (Runtime terms are displayed in gray.)

EFFECT FORK
{é[i— K[leteffectE ine]];0; 58} $E¢ 6 {€[i — K[forke]]; o; 6} n=|é
{€li = K[e{$E/E}]]; o; 5 W {SE}D {eli = K[Q], n>e]; 0; 6}
ALLOC PURE
{é[i— K[refu]];0;6} (¢o e;1 —p ez {€li—> K[e]]; 0; 63
{eli = K[]]; o[t = 0]; 6} {€li = Kle:]]; o; 6}

(b) Operational rules.

BETA HANDLE
(recfx.e)v —pe{(recfx.e)/f,v/x} $E ¢ L(K)
H = handle [] witheffect $Ex, k= h|ly=r
MULTI-SHOT

(kont K) v — K[v] H[K[perform $E v]] —, h{v/x, kont H[K]/k}

(c) Pure-reduction rules.

Fig. 1. Syntax and semantics of A-blaze.

nodes in its syntax tree. We use the notation K[K’] to denote the context obtained by concatenating
these lists. The similar notation K{e] is used to denote the expression obtained by the operation of
filling K with e, characterised by the equations: [][e] = e and (K[K'])[e] = K[K'[e]].

Most of the syntactic constructs of the language are standard. In the following paragraphs, we
explain two aspects that are unusual: the syntax of function definitions and the distinction between
effect names and effect labels.

Function definitions. Functions are defined using the syntax rec f x. e. The variable x is a formal
argument of the function. Its scope is e. The variable f is bound to the function definition itself (that
is, the entire term rec f x. e). It can be used in the scope of e to write recursive definitions. When f
does not occur in e, we use the simpler notation fun x. e. For function definitions with more than
one formal argument, we introduce the following syntactic sugar: fun¥. e £ funx,. ... funx,_;. e
and rec f%. e £ rec f xo. funxy...x,_;. e, where n = |%|.

Effect names and effect labels. Taking inspiration from previous work [Biernacki et al. 2020;
de Vilhena and Pottier 2023; Zhang and Myers 2019], the syntax of A-blaze makes a clear distinction
between effect names E and effect labels $E. Effect names are binders whose scope is delimited by
the construct let effect E in e (following a syntax similar to OCaml’s let exception construct).
Effect labels appear at runtime after the execution of a let effect construct, which binds effect
names to effect labels. The motivation for introducing this distinction is to provide A-blaze with

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

mechanisms to avoid the issue of colliding effect names [Biernacki et al. 2020; de Vilhena and Pottier
2023; Zhang and Myers 2019], when the same effect name is used in two unrelated pieces of code.

To give an example, consider the following implementation of an ask effect [Biernacki et al. 2018]
and the client code colliding, which installs an Ask handler over calls to the function it receives as
an argument:

fun x main. let effect Ask inlet ask = fun _. perform Ask () in

run_ask = pandle main ask witheffect Ask Osk=kxlz=z

fun ask,y. let effect Ask inlet ask; = fun_. perform Ask () in

handle asky() + ask; () witheffect Ask (), k=k1]|z=2

The collision occurs during the execution of run_ask @ colliding. The call to asky in colliding
performs an Ask effect that should be handled by run_ask, but, at this moment, the innermost
handler is the one installed by colliding. If effect names were used to find the handlers, then the
call to asky would be handled by colliding’s handler.

This example illustrates the issue of collision of effect names: the name Ask is used with dif-
ferent purposes by two unrelated pieces of code. It would thus be desirable for the semantics
of let effect E in e to take care of avoiding this collision of names. This is exactly what it does:
when let effect E in e is executed, it allocates a fresh effect label $E which is substituted for E
in e. At runtime, it is $E that is used to perform and handle effects. According to this semantics, the
program run_ask @ colliding runs as expected, because, at runtime, the handlers installed by run_ask
and colliding handle effects for different labels.

>

colliding

3.2 Semantics

The semantics is defined using three sorts of runtime terms: memory locations 7, created by ref
instructions; multi-shot continuations kont K, created by handlers during the handling of an effect;
and effect labels $E, which, as explained, are created by let effect instructions.

Memory operations follow a standard heap semantics [Jung et al. 2018]. The semantics of handlers
that capture multi-shot continuations is also standard [Pretnar 2015]. The semantics of let effect
follows [de Vilhena and Pottier 2023].

The semantics is formalised by a number of operational rules, of which the most relevant can be
seen in Figure 1b. The rules define a reduction relation between configurations of the form {¢; o; 6},
where € is a pool of running threads, o is a store, and § is a set of allocated effect labels. Rule ALrLoc
captures the semantics of memory allocation where a fresh location ¢ is non-deterministically
chosen and initialised in ¢ with v. Rule FORK captures the semantics of fork e, allocates a thread
to execute e and returns (). Rule EFFECT captures the semantics of let effect: to guarantee
freshness, the non-deterministically chosen label $E must not be in the set of pre-allocated labels 6.
Finally, Rule PURE captures the semantics of pure reductions e — €’, partially defined in Figure 1c.
Rule BETA is the standard beta reduction. Rule MuLTI-sHOT shows how the invocation of a multi-
shot continuation kont K restores K as an evaluation context. Rule HANDLE shows how control
is transferred to the effect branch h of a handler in case of an effect. The term < (K) denotes the
labels of the handlers in K. The condition $E ¢ & (K) ensures H is the innermost handler.

4 Logic

The logic consists of two main layers with independent notions of refinement and independent
reasoning rules. The first layer, baze, offers a base logic built directly on top of Iris [Jung et al. 2018].
The baze logic offers an expressive notion of refinement for arbitrary A-blaze programs. Reasoning
about programs with multiple effect labels in baze however can be challenging, motivating the
introduction of the second layer, blaze, which is built on top of baze and tailored for programs

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:11

with dynamic labels. So far, we have used the name blaze for the collection of both logics. To avoid
confusion, from now on, we use the term blaze to refer exclusively to this second layer.

As noted in §1, the novelty of both logical layers lies in the design of a comprehensive set of
high-level reasoning rules (Figures 3 and 5) for the relational verification of programs with handlers.
The model of baze closely follows Biernacki et al. [2018]’s model of refinement, Allain et al. [2025]’s
domain of abstract protocols, and ReLoC [Frumin et al. 2021]’s model of observational refinement.
Moreover, the model of blaze closely follows the model of TesLogic [de Vilhena and Pottier 2023].

4.1 baze: The base logic

The refinement statement in baze takes the form e; 5 e, (7) {R}, where ¢; and e, are A-blaze
programs, 7 is a parameterised relational theory, and the postcondition R is a predicate on pairs of
values. It intuitively means that, under any pair of contexts K; and K, that validate the theory 7,
either Kj[e;] diverges or both K;[e;] and K, [e,] terminate with values v; and v, such that R(v;, v,)
holds. The key to formalise this notion of refinement is thus to precisely formulate what is a

theory 7~ and what it means for a pair of contexts to validate 7.

4.1.1 Relational theories. A theory 7~ is modelled as a predicate of type?
iThy = (ExprX ExprX (Exprx Expr — iProp)) — iProp,

where iProp is the type of Iris assertions.” Intuitively, the assertion 7 (e, e,, Q) means that ¢; is
related to e, and that ¢; and e, can be replaced with any pair of expressions e; and e, for which the
return condition Q(e;, e;) holds. Perhaps the simplest example of a relational theory is the empty
theory L1, which does not include any relations: L(ej, e,, Q) = False.

For a slightly more involved example, consider the definition of theory Timer . from §2.1 relating
the effect $Timer? to itself and asserting that both effects return the same output:

A

Timer.n(perform $Timer o, perform $Timer v, Q) = OVw €Val Q(w, w)

To express that both perform $Timer v operations return the same output, the theory Timer s
asserts the return condition Q holds of any pair of copies of the same value: O Vw € Val. Q(w, w).
This assertion is guarded by Iris’s persistently modality 0. Typical separation-logic assertions, such
as the points-to assertion ¢ — o, declare ownership of resources, so, by default, they cannot be
arbitrarily shared or duplicated. The persistently modality indicates when an assertion does not
claim ownership of ephemeral resources and thereby can be duplicated. Here, it is used to indicate
that the effect $Timer complies with a multi-shot policy whereby the operation perform $Timer v
can return multiple times. The return condition must hold every time the operation returns.

4.1.2 Context-closure operation. As defined, the theory Timer . suffers from the limitation high-
lighted in §2.3: Timer . is limited to relations between single perform expressions, when, in fact,
it is desirable for the theory to enjoy some form of context-local reasoning with which perform
expressions can be related under evaluation contexts. More abstractly, we wish to close a theory 7
under contexts, so that, along rough lines, if 7 (e;, e,, Q) holds, then so does 7 (K;[e;], K, [er], P)

This type is similar to the type of semantic rows Eff from Biernacki et al. [2018, §3.2] and to the type of abstract protocols
from Allain et al. [2025, §6]. See §6 for an in-depth discussion.

3Tris assertions include standard connectives and quantifiers, separation logic connectives (in particular, the separating
conjunction * and the separating implication —), and modalities whose purpose and meaning we explain as they appear.
In §2.1, we assume $Timer is available. Formally, this assumption means $Timer is created by a let effect instruction
placed at the global level.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

O(ey, e, S) = Vi, K. specCtx — i = K[e,] = wp e; {v;. Jv,. i > K[v,] * S(vp, 0,)}
e1 e (T){R} = VK, K;, S. {R}K; S K, (T) {S} = O(Ki[er], K;[er], S)
N {vz;,, or.R(vy, 0) = O(K,[v,], S, S)

1>

>

{R} Kl S Kr <T> {S} Vel, er.T < el 5 (% {R} —k O(Kr[er]’ S’ S)

T <ese,{R} = 30.T (e, e, Q) * O>Vey, €/. Qe e;) ¢, 3 e, (T) {R}
Fig. 2. Model of baze.

for some return condition P. To this end, we introduce the context-closure operation:

((Isp, Isy) 1 T) (ers €, P) =
3, ¢ K, 1, 0. =N v e =IGl6] 4 meurallls,) o neurl(ls,) +
T (e, €7, Q) + OVey', e Q(ef, &) = P(Ki[e]'], Kr[e]])

The context-closure of a theory 7 enables the relation of expressions of the form K[e/]
and K; [e;], provided the subexpressions e; and e, are related. A common restriction on the con-
texts K; and K, under which e; and e; appear is that they contain no handlers for the effects
performed by these expressions. To incorporate this restriction, the context-closure operation is
parameterised by a pair of lists of labels Is; and Is, and includes the condition that K; and K, be
respectively neutral for Is; and Is,. A context K is neutral for a list of labels Is, noted neutral(ls, K),
when K contains no handlers for labels in Is: Z(K) N Is = 0.

In the example of Timer,q, the context-closure Timer’reﬂ = ([$Timer], [$Timer]) I Timeryepn
enables the relation of expressions under contexts K; and K, respectively neutral for $Timer:

Timer’reﬂ(el, er, Aej e Q(Ki[ef], Kr[e/])) + Timer’reﬂ(Kz[el], K ler], Q).

4.1.3 Model. With the definition of iThy, it is now possible to formalise the notion of validation of
a theory by a pair of contexts and consequently to formalise the notion of a refinement relation
parameterised by a theory.

Figure 2 shows the definition of the refinement relation e¢; 5 e, (7) {R}. The definition is
recursive and relies on the validation of a theory by a pair of contexts {R} K; < K, (7) {S}. The
definition also relies on the notions of observational refinement O (e, e,, S) and of admissibility of
a refinement by a theory 7 < ¢; 5 e, {R}. The notion of admissibility is transparent to the user,
whereas the notions of observational refinement and theory validation are opaque and used only
in the model.

Observational refinement is defined exactly like in ReLoC [Frumin et al. 2021, §7.1]. The in-
tuitive reading of O(ey, e, S) is that either e; diverges or both e; and e, respectively terminate
with values v; and v, such that S(v;, v,) holds. The formal definition makes use of Iris’s weakest
precondition wp e; {...}, which expresses precisely the condition that e; either diverges or termi-
nates with a value. To express conditions on e,, the definition makes use of the ghost thread-pool
assertion i = K|e,] to state that thread i on the specification side is about to execute e,. The use
of i ® K[v,] as a postcondition means that thread i finished executing e, and that e, returned
output v,.°> The thread identifier i is universally quantified, because it is not particularly relevant

The assertion specCtx is used to momentarily give ownership of the specification side’s resources. It is defined like
in [Frumin et al. 2021]. Its definition is included in the Appendix (Figure 14).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:13

BIND
VALUE INTRODUCTION traversable(Kj, K, T°) TCF
R(vy, vy) T <e 3e {R} e S e (T) {vror. Ki[o1] 3 Kr[o,] (F) {R}}
o S 0. (T) {R} e1 3 e (T){R} Kile]l 3 Kr[e,] (F) {R}
EXHAUSTION
e 3 e (7) {R} MONOTONICITY
Yoy, vy R(Z)l, Z)r) —k KI[UI] 3 Kr[vr] <7:> {S} e ser <T> {R} TCF
Vej, e,. T «e e {R} = Ki[e]] 3 K:[e[](F){S} O Vo, v,. R(vy, vy) — S(vy, vy)
Kile] 3 Kr[e] (F) {S} e S e (F){S}
STEP-L STEP-R
e —p € >Kle] 3 e-(T){R} er —p e e 3 K[e/] (T){R}
Kle] 5 e-(T) {R} e 3 Kle] (T) {R}

Fig. 3. Reasoning rules of the base logic.

which specific thread is related to e; as long as it executes e,. The context K under which e, runs is
universally quantified to endow observational refinement with context-local reasoning.’®

Given the intuitive reading of observational refinement O(e;, e,, S) and assuming that the notion
of validation of a theory 7~ by a pair of contexts K; and K, is captured by {R} K; 3 K, (7 {S}, the
definition of the refinement relation e; < e, (7°) {R} reads as: for every pair of contexts K; and K,
and for all postconditions S, if K; and K, validate 7, then, either K;[e;] diverges or both Kj[e;]
and K, [e,] terminate with values by S. The universal quantification over contexts is inspired by
Pitts and Stark [1999] biorthogonality technique, used for the first time by Biernacki et al. [2018] to
define logical relations for a language with effect handlers.

The definition of {R} K; < K, (7") {S} consists of the conjunction of two clauses: (1) a clause
relating K; and K, when filled with values related by R and (2) a clause relating K; and K, when
filled with expressions e; and e, for which the admissibility condition 7 <« ¢; < e, {R} holds.
This condition asserts that the refinement between e; and e, with postcondition R is admissible
under 7. Because R is a relation on values while return conditions in 7~ are relations on expressions,
admissibility existentially quantifies over a return condition Q such that 7 (e;, e,, Q) holds. To
connect Q with R, the definition also claims that the refinement e; < e; (7") {R} holds for every
pair of expressions e; and e, related by Q. This occurrence of the refinement relation makes its
definition recursive. This explains the use of the later modality >, which is one of Iris’s mechanisms
to introduce recursive definitions: as long as the recursive occurrences are guarded by the later
modality, the definition can be constructed in Iris. The use of the persistently modality is again
related to the compliance with multi-shot continuations.”

4.1.4 Reasoning rules. The refinement relation enjoys a collection of powerful and high-level
reasoning rules shown in Figure 3. Rules VALUE, STEP-L, and STEP-R are standard: Rules sTEP-L
and sTEP-R provide the ability to partially execute code using pure reductions and Rule vALUE
allows the user to end a refinement proof when both sides terminate with values that satisfy the
postcondition. The remaining rules are novel.

%There is no need to enclose e; under a universally quantified context, because wp already enjoys context-local reasoning.
7In §4.3, we show how to extend the logic with support for one-shot continuations with no changes to the model.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

Rule INTRODUCTION states the admissibility of a refinement between e; and e, with postcondi-
tion R under the theory 7 implies ¢; < e, (7) {R}. This rule is usually applied to reason about
effectful operations independently of their handlers.

Rule EXHAUSTION incorporates a case-analysis principle into the logic whereby, if e; < e, (7) {R}
holds, then the derivation of Kj[e;] < Ki[e] () {S} splits into two subgoals: one where ¢;
and e, are replaced with values related by R and another one where ¢; and e, are replaced with
expressions e; and e, such that 7~ < ¢; < e; {R} holds. This rule allows one to reason about handlers
independently of their handlees. It is typically applied when the contexts K; and K, contain handlers
monitoring the handlees e; and e,. However, it is important to note that the rule is applicable to
any contexts Kj and K. This flexibility allows the relation of programs where handlers on both
sides of the relation do not necessarily match. In §4.1.5, we return to the example of countdown (§2)
to show this principle in action.

Rule moNOTONICITY enables one to weaken the postcondition R and the parameterised the-
ory 7 of a refinement e; 5 e, (7) {R}. Such a reasoning principle is useful, for example, when
the refinement e¢; < e, (7)) {R} is assumed, but 7~ and R do not exactly match F and S. The
weakening of R to S is captured by the condition O Vu;, v,. R(v, v,) — S(v}, v,), where the persis-
tently modality ensures this ordering does not rely on ephemeral resources and can thus be used
multiple times in case the program is reified as a multi-shot continuation and resumed multiple
times. The weakening of 7~ to ¥ is captured by the theory ordering 7~ C ¥, which is similarly
defined: O Vey, e,, Q. T (ey, er, Q) = F (ey, €, Q).

Finally, Rule BIND enables context-local reasoning about e; and e, independently of their enclosing
evaluation contexts K; and K. The only side-condition is that there must be a theory 7 contained
in ¥ (that is, 7~ C) that traverses the pair of contexts K; and K,. Informally, this says that
whenever ¢; and e, are related by the theory 7, so are K;[¢;] and K, [e,]. The formal definition is:

traversable(K;, K., T) = OVey, e, Q. T (e, e, Q) —¢
3P. T (Ki[el, Kr[er], P) = OVey, e;. P(Ki[e]], Kr[e[]) = Q(ey, e;
This definition is transparent to the user. In other words, when applying Rule BIND, the user

must find a theory 7 and prove this traversable condition. Fortunately, the predicate traversable
works nicely in combination with the context-closure of a theory:

YT, Is;, Isy, Kj, K. neutral(ls;, K;) — neutral(ls,, K,) — traversable(K;, Ky, (Is;, Is,) {| 7) (10)

Using this theorem, it is possible to derive the following version of the bind rule, where the
traversable condition is replaced with more explicit conditions on the contexts K; and K;:

neutral(ls;, K;) neutral(ls,,K,) (Is;, Is,) [T C F
er 3 e ((Isy, Is,) I 7) {vr 0. Ky[o1] 3 K [0,] (F) {R}}

4.1.5 Example. We briefly discuss how these rules can be used to derive Refinements 6 and 7 from
§2.2. First, let us formally define the theory Timer

Timergp,, = ([$Timer], [1) I (Get @ Set)

Get(perform $Timer (inl (), !4, Q) = ¢ fgs x = O :ﬁs x = Q(x, x))
Set(perform $Timer (inry), £ —y, Q) = 5, _ + O S5y — 0(0),)

The definition uses the sum operator @, which combines relations from two theories:
(T eF)(en er, Q) = T(er, e, Q) V F(er, €, Q)

The theory Get allows the handlee to establish a refinement between perform $Timer (inl ())
and !/ in exchange for the fractional ownership ¢ 3 x. This assertion appears as a premise to the
return condition, which holds of the pair (x, x). From the perspective of the handlee, this means that

DERIVED-BIND F Kiler] S Kiler] (F) {R}

¢ .
spec*

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:15

the fractional ownership ¢ '12’5 x can be reclaimed and that the expressions perform $Timer (inl ())
and !/ both return x. The reading of Set is analogous.

Because Timer‘s’peC is defined using the context-closure operator, the theory can be used in
conjunction with DERIVED-BIND (where ¥ is instantiated with Timerﬁpec) to carry out Refinement 6.

The key rule to establish Refinement 7 is Rule ExHAUsTION. It is applied using K; instantiated with
run_st_passing’s handler and K, instantiated with []. Furthermore, the theory 7~ in the statement
of Rule EXHAUSTION is taken to be Timery,,. and ¥ is instantiated with L. During the proof of
the clause Ve, e;. TimergpeC < ¢ 3¢/ {=} = Ki[e]] 5 e/ {=}, the admissibility condition gives
the fractional ownership ¢ 3¢ x to the handler. In combination with the other assertion £ 5 x
initially given to the handler as a premise in 7, full ownership of ¢ is claimed by the handler, which
can then update 7 in case of a set request. The return condition can be interpreted in this proof as
the condition under which the handler can resume the continuation: in the case of a get request,

for example, both the value x and the fractional ownership ¢ »1£>5 x must be supplied.

4.2 blaze: A logic for effect handlers with dynamic labels

So far, we have exclusively considered examples where the effect labels have already been allo-
cated. This observation incites the question: how to reason about programs like run_ask (§3.1)
where effect labels are allocated locally to avoid collision of effect names? For instance, given two
clients of the ask effect main; and main, and an integer x, is it possible to establish a refinement
between run_ask x main; and main, (fun_. x) when main; and main, perform arbitrary effects?

The verification of programs with local allocation of effects, such as run_ask, depends heavily on
assumptions about fresh labels being distinct from previously allocated ones. The baze logic places
the burden of keeping track of these assumptions entirely on the user. So, while baze can be used
to reason about run_ask, it is not placed at the right level of abstraction. To address this limitation,
we introduce blaze, a logic built on top of baze to facilitate reasoning about dynamic labels. In
blaze, it is possible to establish (in a relatively straightforward way) a strong result about run_ask
where assumptions about labels being distinct are hidden:

Vmainy, [V asky, asks, M.
mainy, O ask; () 3« asks () (M) {vj0r. v; = v, = x} —*
x, L, R. \ mainy ask; 3« mainy ask; (L + M) {R}

The novelty of the refinement relation e; <4 e, (L) {R} is the parameterised list of theories L.
The elements of L are triples of the form (Is;, Is,, 7°), where Is; and Is, are lists of effect labels
respectively allocated by the implementation and the specification sides, and 7 is a theory relating
expressions that use these effects. Roughly speaking, the list M in Refinement 11 is used to
relate fun _. perform Ask () to fun_. x. Its universal quantification reflects the fact that Ask is
allocated locally by run_ask. The list L represents an ambient set of relational theories used to
relate main; to main,. The lists of theories £ and M are disjoint, because the labels in £ are
allocated before Ask. This assumption however exists only as part of the model of the logic. Because
the model is opaque, this requirement is never directly exposed to the user.

run_ask x main; Sy

- mainy (fun_. x) (L) {R} (11)

4.2.1 Model. The formal definition of ¢; <, e, (L) {R} appears in Figure 4. It unfolds to a refine-
ment in baze with parameterised theory interp(L) and premise valid(L).

The theory interp(L) is constructed as the iterated sum of theories (Is;, Is,) [7 for every
triple (Is;, Is,, 7) in L. In essence, this construction sacrifices the expressivity of general theories
in baze’s refinement relation to endow the blaze layer with context-local reasoning by default.

The premise valid(L) is defined using the terms labels; (L) and labelss (L), which collect the
labels in £ that belong to the implementation side and to the specification side, respectively. The

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

er 3x e (L) {R} = wvalid(L) — e; 5 e, (interp(L)) {R}

interp([]) £ L valid(L) =
interp((Isy, Is,, T) = £) = {distinct(labelsi(.[)) x V$E € labels; (L). labeliD($E)

(Isg, Isy) I T @ interp(L) distinct(labelss (L)) * V$E € labelss(L). labelS ($E)

labels; ([])
labels; ((Is;, _,) = L)

[labelss([])
Is; + labels; (L) labelss((_, Is,, _) = L)

(]
Is, + labelss (L)

11> 11>
11> 11>

Fig. 4. Model of blaze.

assertions label‘i:'($E1) and labelS’ ($E,) claim ownership of persistent resources obtained after
the allocation of the effects $£; and $E,.® Therefore, the premise valid(L) asserts that the labels
in labels; (L) and in labelss (L) have already been allocated and are pairwise distinct. In essence,
this premise represents the assumption that the theories in £ do not interfere with one another or
new theories for newly allocated effects.

4.2.2 Reasoning rules. The reasoning rules of blaze appear in Figure 5.

Rule EFFECT-L-* can be used in conjunction with Rule ADD-LABEL-L-* to add a freshly allocated
label to one of the triples in L. The assertion label; ($E) works as an exchangeable token that is
forged by Rule EFFECT-L-* and consumed by Rule ADD-LABEL-L-*. Rules EFFECT-R-* and ADD-LABEL-
R-* enable analogous reasoning for the specification side. The order of the triples in £ and the
order of the labels in a triple are not important. New triples can be added with Rule NEW-THEORY-*.

The statement of Rule INTRODUCTION-* is similar to Rule iINTRODUCTION. The theory 7 can be
chosen among any of the list £. Admissibility must be shown with respect to the triple (Is;, Is,, 7):

(Ist, Isy, T) we; S - (LY{R} =
s e Ko K . G =Kilel] « e =Ki[el] + neutral(ls,Ki) » meutral(ls) +
1 €r B s 7_(6;, e;’ Q) * O >Ve;/’ e;/. Q(el//’ e;/) — K] [e;’] S« Ki [3;’] <-£> {R}

The ability to relate expressions under arbitrary contexts K; and K, in this definition closes
the theory 7~ under neutral contexts (for Is; and Is,). This design choice makes it possible to
state Rule BIND-x in a similar fashion to Rule DERIVED-BIND with explicit side conditions on K;
and K,.. Namely, the condition £ (K;) C labels; (M) restricts the handlers in K; to the effect labels
in labels; (M). The condition Z(K,) C labelss(M) is analogous. The condition £+ M C, N is
defined as the multiplicity-preserving inclusion of £ + M in N. It guarantees the labels in £ are
disjoint from the labels in M. In combination, these conditions restrict the handlers in K; and K, to
not capture effects with labels from L.

Finally, Rule EXHAUSTION-* incorporates the exhaustion principle into blaze. The expressions ¢;
and e, are related under a list of theories M, but the user needs to choose only one of the theories 7~
in M with which to perform the case-analysis reasoning; that is, the premise requiring a relation
between K;[e/] and K, [e;] assumes the admissibility with respect only to the theory 7. Intuitively,
this is possible because of the conditions &#(Kj) C Is; and £ (K;) C Is,, which guarantee that the
remaining theories in M are irrelevant in the context of K; and K. The persistently modality is

8The assertion label‘i:| ($E;) is defined in terms of a more general assertion label; ($E;, dg), where dq is a discardable
fraction [Vindum and Birkedal 2021]. Taking dq as the full fraction 1 gives the assertion label; ($E;) whereas taking dg
as the discarded fraction gives the persistent assertion labeliD ($Ey). The assertion labels‘:J ($E,) is analogously defined in
terms of an assertion labels ($E,, dq). These definitions are included in the Appendix (Figure 15).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:17

EFFECT-L-* EFFECT-R-%
> V$E. label; ($E) —« K[e{$E/E}] =« e, (L) {R} VSE. labels($E) — e; <« K[e{$E/E}] (L) {R}
K[leteffect E ine] 54 e, (L) {R} e; 3« K[leteffect E ine] (L) {R}
ADD-LABEL-L-% ADD-LABEL-R-%
label; ($E) e Sx € (($E : Isy, Isy, T) 2 LY{R} labels($SE) €5 Su er {(Isy, $E 2 Is, T) == L) {R}
e; 3x e {(Is, Isy, T) :: LY {R} e Sx e ((Isg, Isy, T) :: LY {R}
NEW-THEORY-% INTRODUCTION-%
er 3« e ([, [], L) = L){R} (s, Isy, T) € L (Isy, Isy, T) < er 3x e (L) {R}
e S« er (LY {R} e 3 e (L) {R}

EXHAUSTION-%
Z(Ky) Cls; Z(K,) C s,
e; 3x e, (M) {R} M= (s, Isy, T) 2 L N = (s, Isy, F) = L
O Vo, vr. R(o, vy) = Kj[o7] 3% Kr[07] (N) {S}
{D Ve;, e.. (Is;, Is;, T) « el’ Sx e (MY {R} = K [e;] 3« K [er] (N)Y {S}

K; [el] 3« K [er] <N> {S}

BIND-*
Z(Kp) C labels; (M) Z(K;) C labelss(M) LHAMEN
er S« er (L) {vrvr. Ki[or] 34 K [0,] (N) {R}}

Kiler] s« Krler] (N) {R}

Fig. 5. Reasoning rules of blaze.

needed because these remaining theories can still relate effects that cause K; or K, to be captured
in a multi-shot continuation.

4.2.3 Example. We now show how these reasoning rules can be applied to derive Refinement 11
(§4.2). The proof starts with the application of Rules NEW-THEORY-%, EFFECT-L-%, and ADD-LABEL-L-%,
in this order. This sequence of rules has the effect of adding the fresh label $Ask to a new entry in the
ambient list of theories L. Initially this new entry has the form ([$Ask], [], L). The core of the proof
is the application of Rule EXHAUSTION-*, where ¢; is instantiated with main; (perform $Ask ()),
the expression e, with main, (fun _. x), and the theory 7 with AskT(perform $Ask (), x, Q) =
O Q(x, x). The refinement between main; and main, directly follows from the premise of Re-
finement 11 with the abstract theory list M instantiated with [([$Ask], [], AskT)]. The other
conditions of Rule EXHAUSTION-x are straightforward.

4.3 Support for one-shot continuations

The introduction of one-shot continuations is motivated by the fact that, in languages like OCaml,
the violation of a one-shot discipline causes a runtime error. We thus follow [de Vilhena and Pottier
2021; van Rooij and Krebbers 2025] to introduce one-shot continuations in a way that enables
the logic to rule out such runtime errors. The idea is to represent one-shot continuations with a
construct cont ¢ K° that, in addition to the reified context K, carries a location ¢ which triggers a

°In our Rocq formalisation [de Vilhena et al. 2026], we have an extended syntax k (asmulti)’ for the continuation binder
in the effect branch of a handler. The keywords asmulti are optional. Their presence indicates a multi-shot semantics.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

runtime error if the contination is resumed twice. By the soundness theorem of the logic (§4.4), a
verified program either diverges or terminates, so it cannot resume a one-shot continuation twice
as runtime errors are guaranteed to be absent.

Another motivation is that, as we have seen, from a logical perspective, allowing continuations to
be resumed multiple times results in the addition of persistently modalities in some of the reasoning
rules, most notably, in Rule monoTonICITY. To provide the logic with a strong monotonicity
reasoning principle applicable to fragments of code that abide by a one-shot discipline, we take
inspiration from van Rooij and Krebbers [2025], by introducing the one-shot operator O7", a semantic
version of the flip-bang operator:'°

(OT)(@[, er, Q) é EP T(el’ er, P) * [>V€;, e;“ P(el/, e;) — Q(e;’ e;-)

The key property of this definition is that it closes a theory 7~ under a monotonicity principle on
return conditions: if (O7)(e;, e,, Q) and Yoy, v,. Q(v;, v,) = P(v;, v,) hold, then (O7)(ey, ey, P)
holds. Using the notations Oms7T = T, Ops7T = OT , OmsA = O A, and [psA = A, it is then possible
to incorporate a generalised monotonicity principle into the logic:

(OmYor, vr. R(vg, vr) = S(vg, v,))
ese(T){R} TEF

Taking m = ms yields Rule MmoNnoTONICITY, While taking m = os eliminates the persistently
modality, thereby allowing ephemeral resources to be used in the proof that R implies S.

The blaze logic admits a similar generalised monotonicity rule and a generalised exhaustion rule
that makes use of the one-shot operator to eliminate the persistently modalities in EXHAUSTION-*.
Both rules are included in the Appendix (Figure 11).

GEN-MONOTONICITY F e S e {OmF) {S}

4.4 Soundness

Soundness of baze is shown by a standard adequacy statement [Frumin et al. 2021, Thm. 7.1] that
relates the notion of refinement to the underlying operational semantics of A-blaze:!!

THEOREM 4.1. If+ e; S e, (L) {True}, then either e; diverges or both e; and e, terminate.

Soundness of blaze follows as a corollary by e; <« e, ([]) {True} ¢; < e, (L) {True}.

Another common corollary of adequacy is contextual refinement [Frumin et al. 2021, Lem. 7.2].
We cannot write the statement of contextual refinement, because it depends on types but A-blaze is
untyped. Extending A-blaze with types is one of our directions for future work (§7).

5 Case Studies

To assess the usability of the logic, we verify refinement statements for a number of interesting
effects including concurrency (§5.1), Haskell-like non-determinism (§5.2), and state, where, like Bier-
nacki et al. [2018, §4.2], we show state can be implemented in terms of two independent reader and
writer effects. In the interest of space, we do not discuss this state effect in detail. Its implementation
can be found in the Appendix (§C.1). Mechanised proofs of all case studies are included in our Rocq
formalisation [de Vilhena et al. 2026].

Their absence indicates the handler captures the handlee in a one-shot continuation. The construct cont ¢ K is introduced
at runtime by such handlers.

10This definition can also be seen as a generalisation of the upward closure [de Vilhena 2022, §2.2.2] to a binary setting.
Theorem 4.1 states a slightly weaker result than the adequacy theorem proven in the Rocq development [de Vilhena et al.
2026] This weaker version, which is sufficient to show soundness, uses a fixed postcondition True, whereas the formalised
one, which can be found in the Appendix (Theorem B.3), uses an arbitrary pure postcondition.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:19

runForkSpec = OV mainy, main,.
Vfork,, fork,, L.
forkSpec(fork,, fork,, L) —x
mainy fork, <, mainy fork, (L) {True}

i run_fork mainy S
mainy (fun task’. fork (task’())) {True}

forkSpec(fork,, fork,, L) = OVtask,, task,.
tasky () S« tasky () (L) {True} — fork, task; 34 fork, tasky (L) {True}

Fig. 6. Fork case study: Specification.

5.1 Concurrency

Effect handlers enable the implementation of cooperative-concurrency libraries. In such libraries,
multiple tasks can be spawned and their execution is monitored by a scheduler making sure at most
one task runs at a time. It is an important and interesting application of effect handlers, serving
as the “primary motivation” for the addition of effect handlers to OCaml [Leroy et al. 2025, §24.5].
Here is the handler-based implementation of a fork effect [Biernacki et al. 2020, Fig. 11] in A-blaze:

run_fork = fun main.
let effect Fork in let g = new_queue() in
let run = rec run task. handle task() with
| effect Fork task’, k = push qk; run task’
| _= ifemptygthen () else (letk =popgink())
in run (fun _. main (fun task’. perform Fork task’))

The function run_fork supplies a piece of client code main with the functionality to fork tasks by
monitoring the execution of main with a handler for the Fork effect. The handling of a Fork effect
with payload task’ pushes the paused continuation k to a queue q. This queue is allocated at the
beginning of run_fork’s execution. It is initially empty, and, as an invariant, it stores continuations
that can be readily resumed with (). Updates to ¢ maintain this invariant, because, thanks to a
deep-handler semantics, the continuation k includes the Fork handler at its top-most frame. After
this update, the handling of Fork terminates by running task’” under a new Fork handler. When
a task terminates, if the handler finds g non-empty, it pops a continuation k from ¢ representing
a previously paused task and resumes the execution of this task. If ¢ is empty then all scheduled
tasks have executed, so the function run_fork terminates.

The implementation of run_fork is concise, but relies on advanced programming features, notably,
the ability to reify contexts as first-class continuations using handlers and the ability to place
these continuations in the store. The complexity of run_fork’s operational behaviour motivates
the question: is it possible to show that the fork functionality implemented by run_fork can be
abstracted as a real concurrent fork instruction?

In this case study, we answer this question positively by verifying in blaze that the functionality
implemented by run_fork refines the primitive fork construct of A-blaze. The formal statement is
written in Figure 6. The specification of run_fork, the assertion runForkSpec, states a refinement
between the application of run_fork to a client main; and the application of a client main, to
a function fun task’. fork (task’()) that directly forks task’. The clients main; and main, are
universally quantified in this specification. It is assumed that main; and main; can be related when
respectively supplied with abstract fork implementations fork, and fork,. It is the obligation of
the user of the library to show the relation between main; fork, and main, fork,. To establish this
relation, the user can rely on a relational specification of fork; and fork,, the assertion forkSpec,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

stating a relation between the application of fork; to a task task; and the application of fork, to a
task task,. To use this specification, it is again an obligation of the user to establish the relation
between task; () and task; (). In establishing this relation, the user can still rely on forkSpec to
relate further calls to fork; and fork, in the tasks task; and task,. The refinement between main,
and mainy is carried out under an abstract theory list £. Intuitively, this list represents the internal
relational theory that is used by run_fork to relate Fork to fork. Apart from £, which is abstract
to the user, the specification runForkSpec assumes an empty ambient theory to relate the effects
of main; and main, as well as the effects of two forked tasks task; and task,. In other words, the
specification disallows main; and main, as well as forked tasks to perform unhandled effects. This
limitation is necessary because forked tasks on the specification side of the refinement run on new
empty contexts, where performing an unhandled effect constitutes a runtime error.

5.1.1 Relational reasoning about concurrency. Before presenting the proof of runForkSpec, we
explain how we extend blaze with support for reasoning about native concurrency.'” The logic
has support for invariants in the same way as ReLoC [Frumin et al. 2021]: there are two general
rules for allocating and closing invariants and one invariant-opening rule per atomic instruction.
In the interest of space, we do not discuss these rules, because they are not needed in our case
studies.'® Invariants are not needed, because, in all case studies, native concurrency occurs only on
the specification side of the refinement, whereby, thanks to an angelic flavour of non-determinism,
the user is (or should be) capable of deciding how threads interleave to avoid interference. Despite
the substantial literature on relational concurrent separation logic [Frumin et al. 2018, 2021; Vindum
and Birkedal 2021; Vindum et al. 2022], we found that rules to achieve such a desirable reasoning
ability are lacking with respect to three key limitations which we explain next. To address these
limitations, we design novel relational reasoning rules for concurrency.

Limitation to refinements where forks match. In previous work (for example [Frumin et al. 2021,
§4.1]), it is assumed that fork instructions on both sides of a refinement match. This is clearly not
the case for the refinement runForkSpec because only the specification side forks threads directly.
To overcome this limitation, we follow Vindum et al. [2022] in exposing the ghost thread-pool
assertion i = e'* in the logic. Recall that its reading simply states thread i at the specification
side runs e. Using this resource, we can split a traditional relational fork rule into Rules FORK-L-%
and FORK-R-*, shown in Figure 7. Rule FORK-R-x forges a new resource i = e,. There are many ways
to spend this resource. Rule FORK-L-* consumes it to allow reasoning about a fork e; instruction
on the implementation side. As a condition to this rule, the expressions ¢; and e, must be related
under the theory list £+, which sets every theory in £ to L. This condition guarantees the forked
threads do not perform unhandled effects.

Explicit operational reasoning about thread-pool assertions. The reasoning rules introduced by Vin-
dum et al. [2022, Fig. 8] require the user to explicitly manipulate thread-pool resources; that is,
the user must inspect the shape of the expression e, in an assertion i = e, and select one of
their rules allowing e, to be partially executed. This is a strong limitation for the verification
of runForkSpec, because the only assumption on forked tasks task; and task; is that task; () re-
fines task; (). The specific shape of task; is unknown. To overcome this limitation, we introduce
Rule LoGIcAL-FORK-* (Figure 7). This rule consumes a thread-pool resource i = K, [e,] and, as a
condition, the user must supply a subexpression ¢; that refines e,. In return, the user can reclaim the
12We focus on blaze but similar reasoning principles can be achieved in baze (Figure 17).
3The rules for allocating, opening, and closing invariants can be found in the Appendix (§C.3.1).

14Vindum et al. [2022] in fact present this resource as a right refinement. In our logic, the user does not explicitly manipulate
this resource; it is already abstract as is, so we can keep its standard notation.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:21

FORK-L-% FORK-R-%
ime egsce (L) {Truel K[O] 3% (L{R} Viiee = e 2 K[OI(L){R}
K;[fork e;] 3« e, (L) {R} e; 3% Kj[fork e] (L) {R}

LOGICAL-FORK-%
i= Kler] e 3x er (L) {R} Yoy, op. R(vy, 0;) = i 2 K, [0,] = Ki[og] <« €/ (L) {S}

Kiler] 3« €, (L) {S}

THREAD-SWAP-%
i= Kler] Vi, K'. j= K'[el] = e; 3w e, (L") {vy_. T, j = K'[v]] * R(vy, v])}

er 3« e, (L) {R}

Fig. 7. Reasoning rules for concurrency.

assertion i = K, [v,] where e, is replaced with its result v,, obtained with no explicit manipulation
of the thread-pool assertion. This rule can be used in conjunction with Rule FORK-R-* to derive
the refinement e; < ef {True} — e, < e {True} — e;; e; < fork (e]); e; {True}, which cannot
be shown using the rules in [Vindum et al. 2022, Fig. 8] without breaking the abstraction of their
refinement relation.

Access to thread-pool resource describing the main thread. With the rules discussed so far, the only
way to obtain new thread-pool resources is by means of Rule FORK-r-x. In other words, thread-pool
resources can only describe forked threads but not the main thread e, on the specification side of the
refinement. As we are going to see, the proof of runForkSpec needs access to the thread-pool resource
describing the main thread. Rule REL-SPLIT from Vindum et al. [2022, Fig. 8] supports this very
feature. However, the statement relies on the fact that ReLoC’s notion of refinement Ak e; S e, : 7
is defined using i = e, as a premise. This makes the adaption of REL-SPLIT to blaze particularly
difficult, because blaze’s model hides thread-pool assertions under multiple layers of abstraction.'
Instead, we introduce Rule THREAD-swAP-* (Figure 7), which allows the user to trade a thread-pool
resource i = K[e,] in exchange for a thread-pool resource j = K’[e;] describing the main thread e;
under an abstract context K’. The expression e, becomes the new main thread on the specification
side and the postcondition is updated to require the termination of e/, which is part of the implicit
requirements of the original refinement.

5.1.2 Verification. After the allocation of an effect label $Fork by run_fork, the crux of the proof is
(1) the introduction of a relational theory Fork to relate $Fork effects to fork and (2) the definition
of the queue invariant in blaze. These definitions appear in Figure 8.

The theory Fork requires task; to refine task, as naturally expected. To allow $Fork effects
in tasky, the refinement between task; and task, assumes the theory Fork itself. The later modality »
guards this recursive occurrence of Fork to facilitate the definition in Iris. The return condition
asserts that both the $Fork effect and fork return ().

Recall that, according to the informal explanation of run_fork, the queue stores continuations that
can be readily resumed. The definition of the queue invariant, the predicate queuelnv, formalises
this description. The term g represents the queue identifier. The term ks describes the contents
of q. Concretely, it is a list of triples (k, (j, K)), where k is one of the continuations in gq. This
connection is captured by isQueue(q, ks.1), which asserts q contains the collection of continuations

15The same holds for baze.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

Relational theory.

Fork(perform $Fork task;, fork (taskz()), Q) =
> tasky () S« tasky O ([([$Fork], [], Fork)]) {True} « Q(O,)

Invariants and predicates.

queuelnv(q, ks, ks’) = isQueue(q, ks.1) =
(*(k, (.K))eks - Jer. j = Kle,] = ready(q, kQ), er)) * (*(_, (.K))eks - F0r. J '=>K[Ur])

ready(q, e;, ;) = Vks, ks'. > queuelnv(q, ks, ks') —
er Sx e ([([$Fork], [, L)]) {queuelnv(q, [], ks+ ks')}

Fig. 8. Fork case study: Internal logical definitions.

in ks. Because the continuation k is created by a running task that performs an effect, there must
be a corresponding task on the specification side that k refines. The thread identifier j and the
context K are used to describe the state of this task: it is an expression e, such that j = K[e,].
Finally, the term ks’ in queuelnv represents the tasks on the specification side that have terminated
and that were once used in the description of continuations in ks.

During the handling of a $Fork effect with payload task], the specification side is a pro-
gram of the form K, [fork (taskj())]. After the application of Rule FORK-R-x, the newly ob-
tained resource i = task'z() is immediately traded, via Rule THREAD-swaAP, for a thread-pool
resource j = K’[K,[()]] describing the main thread. This resource is used to show the queue
invariant is preserved after pushing k. The proof then carries on with run task] on the implementa-
tion side and the specification side correctly adjusted to task)(). Upon termination of a task, if the
queue is non-empty, a continuation k is taken from the queue. At this point, Rule LOGICAL-FORK is
used in conjunction with the thread-pool resource and the ready assumption retrieved from the
queue invariant, thus concluding the proof.

5.1.3 Async/await. We prove a similar refinement statement for an asynchronous-computation
library offering async and await effects [de Vilhena and Pottier 2021; Dolan et al. 2017]. The
implementation run_coop,, which appears in Figure 9 is the translation to A-blaze of the OCaml
implementation from Dolan et al. [2017, Fig. 1].

In addition to a queue of ready continuations, run_coop, also stores continuations in promises.
Abstractly, a promise p represents the result of a running task. The continuations in p wait for this
result. The continuations can be readily resumed once the task finishes, so they are transferred to
the queue. We show that run_coop, refines run_coop,, which offers a more direct implementation
of async using fork instead of storing continuations in a queue. The implementation of await
by run_coop, still relies on a handler and also uses promises to manage waiting threads. To avoid
races, run_coop, uses locks to protect accesses to promises.

The proof that run_coop, refines run_coop, relies on a queue invariant similar to queuelnv
(Figure 8). Other logical definitions used internally in the proof are adapted from de Vilhena and
Pottier [2021] (who carry out the verification of a similar asynchronous library in a unary setting
in Iris). The complete list of definitions is included in the Appendix (§C.2.1).

Finally, we also prove the negative result that run_coop, does not refine the following handler-free
implementation of async and await by run_coop,, where async is implemented using fork and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:23

run_coop, = funmain.
let effect Coopin
let g = new_queue() in

run_coop, = fun main.
leteffect Await in
let new_promise = fun _.

let next = fun_. (ref (inr []), new_lock())
if empty q then () else (popgq) () in
in . let run = rec runp task.
let run = rec runp task. handle task() with handle task() with
| effect Coop request, k = | effect Await p’, k =
match request with acquirep’.2; match !p’.1 with
| inl task’ =

| inlx = releasep’.2; kx

letp’ =ref (inr[]) in linrks = p’.1 « inr (k :: ks);
.push q(fun_. kp"); r.unp’ task’ releasep’.?2
I 1In|1"rj]71’ ?Jakt;h Ip” with ly ?:cguirl‘cep._Zi 4
'y =>| inr ks = p’ « inr (k :: ks) ; next() f_)'e1 ((:nirnls;; réll)éa:ZP. 2;
let (inrks) = !pinp — inly; . iter (funk.fork (ky)) ks
iter (funk. pushq (fun_. ky)) ks; inlet async = fun tas.k Co.
next() let p’ = new_promise() in

fork (runp’ task’); p’
in
let await = funp’. perform Await p’ in
let p = new_promise() in
runp (fun_. main async await)

in

let async = fun task’. perform Coop (inl task’) in
let await = fun p’. perform Coop (inrp’) in
letp =ref (inr[]) in

runp (fun_. main async await)

Fig. 9. Async/await implementations.

await is implemented by busy waiting:

deadlock = fun async await. run_coop; = funmain.
letr =ref (inl ()) in let async = fun task.
let p = async (rec f (). letp =ref (inl () in
match !r with fork (lety = task() inp « (inry)); p
| inl () = async (fun_.)); fO in
| inr p = await p let await = rec await p.
)in match !pwithinl () = awaitp | inro =0
r < inrp; in
await p main async await

The key idea is to adapt the deadlock example from de Vilhena [2022, Fig. 4.2] to exhibit a
client that terminates when using the handler-based library but diverges otherwise.!® In short,
the client deadlock creates a cyclic dependency between p and itself. With the implementation of
async and await by run_coop,, when deadlock executes the final instruction await p, it diverges,
because p is never fulfiled. With the implementation of async and await by run_coop,, on the other
hand, when deadlock executes the final instruction await p, it is captured in a continuation and
stored in p. The internal queue managed by run_coop, becomes empty, so it terminates.

16The precise statement is included in the Appendix (§C.2.2).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:24 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

run_nd_pure = fun main. run_nd_rand % fun main. handle main() with
handle main() with | effect $ND request, k =
| effect $ND request, k = match request with
match request with | inl (1, t;) = letb =ref truein
|inl (¢, 1) = kt; +kty fork (b « false); if !bthenkt elsekt,
| inr () = [] [inr O = (recf . fOYO
ly = [y] ly=y

Fig. 10. Non-determinism handlers.

5.2 Algebraic effects: Haskell-like non-determinism

In this case study, we are interested in evaluating how relational theories can be used to reason about
algebraic effects [Plotkin and Pretnar 2008]. As an illustration, we consider the pair of constructs or
and fail, where e; or e, models the functionality to non-deterministically run e; or e;, and fail
represents a failed execution path. These constructs are written in A-blaze using a global effect $ND:
eiore; = (perform $ND (inl (fun_. ey, fun_. e;))) () and fail £ perform $ND (inr ()).

The construct e; or e; performs a $ND effect with thunked versions of e; and e,. After one of them
is non-deterministically chosen by the handler, its execution is forced with (). The construct fail
just performs a $ND effect.

Plotkin and Pretnar [2013] show that or and fail can be described by the algebraic theory
of a monoid: e; or (e;0res) = (e;orey)ores and eor fail = failore = e. Such an algebraic
theory can be used not only to reason about or and fail but also to state the correctness of an
effect handler providing an implementation of these effects. In short, a handler is correct when the
handling of two programs, that are equal according to the algebraic theory, yields equal results.

This equational correctness criterion suits a pure setting well, but precludes its application to cases
where the effects or and fail are implemented using native non-determinism. For example, consider
the two handler implementations that appear in Figure 10. The implementation of e; or e, provided
by run_nd_pure uses a list to collect the results of returning e; and the results of returning e,.
Paths signalled by fail are not added to this list.'” The implementation of e; or e; provided
by run_nd_rand chooses the expression to run by reading a location b that holds true initially but
is non-deterministically set to false by a forked thread.'® The handling of fail diverges.

The correctness criterion of Plotkin and Pretnar [2013] can be used to justify run_nd_pure
provides a correct implementation of or and fail with respect to their algebraic theory. How-
ever, run_nd_rand falls out of the scope of their approach. Using relational theories of blaze, it
is possible to introduce a similar handler-correctness criterion applicable to both run_nd_pure
and run_nd_rand:

Vmainy, {mainl() <% mainy () {(([$ND], [$ND], Nd) :: L) {=} —

runNdCorrect(run) = mainy, L. |runmain; Sy run mainy (([$ND], [$ND], L) :: L) {=}

The predicate runNdCorrect(run) asserts the correctness of a handler run with respect to a
relational theory Nd. It states that the handling of two handlees main; and main, yields the same
results assuming main, and main, are related under the theory Nd for $ND. The handler run cannot
itself rely on $ND and it must not intercept other effects related by L. The theory Nd enables
algebraic reasoning about or and fail. It is written as the sum of several theories expressing their

7This implementation is similar to the list instance of MonadPlus’s mplus and mzero [Haskell Community 2023].
8This implementation is originally given by Frumin et al. [2021, §6.4].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:25

algebraic laws:

Nd = Assoc; ® Assocy, @ Unity ® Unit, ® Units @ Unity & Refl; ® Refl,

Assocy(e1 0r (e1z 0reg3), (a1 0rexn)oreys, Q) = OQ(err, ex1) * OQ (e, ex) * OQ(ers, €23)
Assocy((e11 0r e12) OF €23, €21 0r (e 0rezs), Q) = OQ(ern, ez1) * OQ (e, ex) * OQ(ers, €23)
Unit;(e; or fail, ey, Q) Unity(failores, e;, Q) =2 O Q(ey, €2)

Units(ey, e; or fail, Q) Unity(e;, failorey, Q) = £1 = OQ(ey, €2)

Refl (e11 0reqs,, e210rexn, Q) = O 0(err, e21) * OQ(erz, e22) Refl,(fail, fail, _) = True

The theory Assoc; captures the associativity of or. The return condition Q is used to express
the condition that the relation holds up to a relation of the subexpressions. The other theories are
written in a similar style, except for Units and Unity, which charge the user one later credit [Spies
et al. 2022], part of Iris’s machinery to avoid cyclic proofs. Without the charge of one later credit,
the theory Unit,, for example, could be used to relate a terminating e; to a diverging e, such
as (rec f (). failor f()) (). This claim is formally proved [de Vilhena et al. 2026].

Asnoted in §1, blaze cannot express algebraic theories that are closed under transitivity. Therefore,
Nd is symmetric and reflexive, but not transitive. The lack of support for transitivity is a known
limitation of step-indexed relational logics [Birkedal and Bizjak 2012; Hur et al. 2012]. Nd is however
sufficiently expressive to relate non-trivial examples of handlees (§C.3). Using the runNdCorrect
correctness criterion, we show that both run_nd_pure and run_nd_rand are correct with respect
to Nd: runNdCorrect(run_nd_pure) and runNdCorrect(run_nd_rand) hold.

A
A

6 Related Work

To our knowledge, this is the first work to introduce a relational separation logic for effect handlers.
In the following paragraphs, we discuss work within closely related topics.

Relational reasoning about effect handlers. Building on the notion of algebraic effects, where
an effect is described by an equational theory, Plotkin and Pretnar [2013] introduce the notion
of correctness of handlers whereby the handler of an effect is correct if the handler respects the
equations describing this effect. This equational approach is well-suited to strictly functional
programs but has never been extended to languages with concurrency and mutable state. We
follow a different approach, namely relational separation logic, but take inspiration from equational
reasoning to introduce a notion of handler correctness that supports these features (§5.2).

Biernacki et al. [2018] introduce binary logical relations for effect handlers. Their biorthogonal-
closed [Pitts and Stark 1999] style of relations inspires similar definitions by several authors [Bier-
nacki et al. 2020; McLaughlin 2020; Zhang and Myers 2019]. Such binary logical relations can be
used as an intermediary step in the proof of contextual refinement. Biernacki et al. [2018] explore
this approach to establish interesting examples of refinement, including a statement about the
ask effect [Biernacki et al. 2018, §4.1], similar to the one studied in §4.2.3, and one about the state
effect [Biernacki et al. 2018, §4.2], ported to our system in our Rocq formalisation.

Logical relations can be used to develop high-level reasoning principles. Biernacki et al. [2018]’s
Lemma 2, for example, can be seen as a form of bind rule. The main limitation of previous logical-
relations approaches is the lack of a comprehensive set of such high-level reasoning rules with which
the user can verify relational properties of programs with handlers without ever being exposed to
details of the model of the logic. Using separation logic as the foundation of our logic also has the
advantage of having a richer assertion language than a language limited to the interpretation of
syntactic types. Such expressivity is key in adding support for higher-order store and concurrency.
(Even though the latter, as discussed in §5.1.1, required original work.)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:26 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

Relational reasoning about continuations in Iris. Timany and Birkedal [2019] devise binary
logical relations for programs that manipulate undelimited continuations captured by callcc.
They use these logical relations to verify multiple challenging examples of refinement, one of
which is similar to the fork library we verify in §5.1. Namely, they show that the callcc-based
implementation of fork written in a sequential language refines the fork construct of a language
with native cooperative concurrency. The refinement therefore relates programs written in different
languages. To carry out this refinement, they devise cross-language logical relations. Like previous
works exploiting logical relations, and unlike our work, the lack of a comprehensive set of high-level
reasoning rules necessitates the proofs to be carried out at the level of Iris’s weakest precondition wp,
which, in their setting, is inconvenient because, in the presence of callcc, the bind rule for their
version of wp is unsound. They mitigate this inconvenience by introducing the context-local
weakest precondition, which admits the bind rule for the price of reduced support for callcc.
(Although notions of weakest precondition that admit the bind rule while keeping convenient
support for callcc exist [de Vilhena 2022, §6.3.2].)

Relational theories. de Vilhena and Pottier [2021] introduce protocols as a mechanism to
allow modular reasoning about programs with effect handlers in a unary setting. The domain of
relational theories iThy (§4.1.1) can be seen as a generalisation to a binary setting of the domain
of protocols [de Vilhena and Pottier 2021, Fig. 4] (Val —» (Val — iProp)) — iProp. An immediate
generalisation is to replace Val with a binary type Val X Val. A more subtle generalisation is to
subsequently replace Val with Expr. This is needed to allow relations between effectful and non-
effectful expressions. For the same reason [Biernacki et al. 2018] introduce a similar domain of
semantic effects Eff [Biernacki et al. 2018, §3.2], defined as a predicate of type (Expr* x (Expr* —
SProp)) — SProp, where SProp is a type of step-indexed assertions. Allain et al. [2025] introduce a
domain of protocols in Iris that coincides exactly with iThy. However, their focus is on the proof of
correctness of compiler optimisations in a fragment of OCaml without handlers. Consequently, they
derive a notion of simulation that admits a general bind rule with no conditions on contexts. To
validate this rule, their simulation relation, by default, closes protocols under arbitrary evaluation
contexts. In baze, we opt for a more flexible context-local reasoning principle where the user can
choose when and under which contexts to close theories via the context-closure operator (§4.1.2).
This flexibility is key in the layered construction of blaze.

Reasoning about dynamic labels. de Vilhena and Pottier [2023] introduce TesLogic, a unary
logic for effect handlers with dynamic labels in a language similar to A-blaze. The model of blaze
is inspired by how TesLogic builds on top of Hazel [de Vilhena and Pottier 2021], a unary logic
for handlers which, like baze, lacks the abstraction principles for dynamic labels. The rules of
TesLogic [de Vilhena 2022, Fig. 7.2], however, differ from the ones in blaze in key ways: whereas
they have an explicit rule to reason about handlers, Rule ExHAUSTION-* can be applied to contexts
without handlers; and, whereas their bind rule is limited to neutral contexts, Rule BIND-* can be
applied to contexts with handlers.

Flexible relational reasoning rules for concurrency. Like Vindum et al. [2022], we notice
limitations of the reasoning rules for concurrency provided by standard relational separation logic.
We have already compared the differences between our approaches in §5.1.1. In short, we both
rely on ghost thread-pool assertions i = e describing the state of thread i on the specification side.
However, while their rules require the user to explicitly execute e, our rules use the assertions i = e
merely as tokens that can be forged, spent, or exchanged during the construction of a proof.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:27

7 Future Work

Limitations of our current framework indicate directions for future work. An important deficiency
is the lack of a type system. In a relational setting, a type system is particularly useful, because
it offers a syntax-directed approach to prove refinements of the form e < e. In the future, we
would like to remedy this deficiency by extending A-blaze with a type system for handlers with
dynamic labels, such as Tes [de Vilhena and Pottier 2023]. It would be interesting to see how blaze
could be used to devise a binary-logical-relations interpretation of Tes and whether the resulting
interpretation could be used to show Tes enforces abstraction principles for programming with
handlers, such as the absence of accidental handling [Zhang and Myers 2019; Zhang et al. 2016].
Finally, we would like to explore alternative definitions of the model. We suspect the later modality
in the definition of baze’s refinement relation can be eliminated by using an alternative method
for constructing recursive definitions, namely Iris’s greatest fixpoint operator [Krebbers et al. 2025;
Team 2025]. Following recent work [Allain et al. 2025; Géher et al. 2022], we would also like to
investigate the implications of generalising the type of postconditions to a predicate on pairs of
expressions. We believe this generalisation could improve context-local reasoning by allowing our
bind rules (BIND and BIND-%) to focus on pairs of expressions that do not necessarily terminate
synchronously.

References

Clément Allain, Frédéric Bour, Basile Clément, Francois Pottier, and Gabriel Scherer. 2025. Tail Modulo Cons, OCaml, and
Relational Separation Logic. In Principles of Programming Languages (POPL), Vol. 9. ACM Press. https://doi.org/10.1145/
3704915

Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic Effects and Handlers. Logical Methods in Computer
Science 10, 4 (2014). https://arxiv.org/pdf/1306.6316.pdf

Dariusz Biernacki, Maciej Pirdg, Piotr Polesiuk, and Filip Sieczkowski. 2018. Handle with care: relational interpretation
of algebraic effects and handlers. Proceedings of the ACM on Programming Languages 2, POPL (2018), 8:1-8:30. https:
//doi.org/10.1145/3158096

Dariusz Biernacki, Maciej Pirog, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting algebraic effects. Proceedings of the
ACM on Programming Languages 3, POPL (2019), 6:1-6:28. https://www.ii.uni.wroc.pl/~mpirog/papers/biernacki-al-
popl19.pdf

Dariusz Biernacki, Maciej Pirég, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect
instances via lexically scoped handlers. Proceedings of the ACM on Programming Languages 4, POPL (2020), 48:1-48:29.
https://doi.org/10.1145/3371116

Lars Birkedal and Ale$ Bizjak. 2012. A note on the transitivity of step-indexed logical relations. (Nov. 2012). https:
//abizjak.github.io/documents/notes/step-indexed-transitivity.pdf

Jonathan Immanuel Brachthéuser, Philipp Schuster, and Klaus Ostermann. 2020. Effekt: Capability-passing style for type- and
effect-safe, extensible effect handlers in Scala. Journal of Functional Programming 30 (2020), e8. https://ps.informatik.uni-
tuebingen.de/publications/brachthaeuser19effekt-revision.pdf

Edwin C. Brady. 2013. Programming and reasoning with algebraic effects and dependent types. In International Conference
on Functional Programming (ICFP). 133-144. https://www.type-driven.org.uk/edwinb/papers/effects.pdf

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming Without Tiers. In Formal
Methods for Components and Objects (Lecture Notes in Computer Science, Vol. 4709). Springer, 266-296. https://homepages.
inf.ed.ac.uk/slindley/papers/links-fmco06.pdf

Ana Lucia de Moura and Roberto Ierusalimschy. 2009. Revisiting Coroutines. ACM Transactions on Programming Languages
and Systems 31, 2 (Feb. 2009), 1-31. https://doi.org/10.1145/1462166.1462167

Paulo Emilio de Vilhena. 2022. Proof of Programs with Effect Handlers. Ph.D. Dissertation. Université Paris Cité. https:
//inria.hal.science/tel-03891381

Paulo Emilio de Vilhena and Francois Pottier. 2021. A Separation Logic for Effect Handlers. Proceedings of the ACM on
Programming Languages 5, POPL (Jan. 2021). https://doi.org/10.1145/3434314

Paulo Emilio de Vilhena and Frangois Pottier. 2023. A Type System for Effect Handlers and Dynamic Labels. In European
Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 13990). Springer, 225-252. https://doi.org/10.
1007/978-3-031-30044-8_9

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/3704915
https://doi.org/10.1145/3704915
https://arxiv.org/pdf/1306.6316.pdf
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3158096
https://www.ii.uni.wroc.pl/~mpirog/papers/biernacki-al-popl19.pdf
https://www.ii.uni.wroc.pl/~mpirog/papers/biernacki-al-popl19.pdf
https://doi.org/10.1145/3371116
https://abizjak.github.io/documents/notes/step-indexed-transitivity.pdf
https://abizjak.github.io/documents/notes/step-indexed-transitivity.pdf
https://ps.informatik.uni-tuebingen.de/publications/brachthaeuser19effekt-revision.pdf
https://ps.informatik.uni-tuebingen.de/publications/brachthaeuser19effekt-revision.pdf
https://www.type-driven.org.uk/edwinb/papers/effects.pdf
https://homepages.inf.ed.ac.uk/slindley/papers/links-fmco06.pdf
https://homepages.inf.ed.ac.uk/slindley/papers/links-fmco06.pdf
https://doi.org/10.1145/1462166.1462167
https://inria.hal.science/tel-03891381
https://inria.hal.science/tel-03891381
https://doi.org/10.1145/3434314
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1007/978-3-031-30044-8_9

111:28 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

Paulo Emilio de Vilhena, Simcha van Collem, Ines Wright, and Robbert Krebbers. 2026. blaze - A Relational Separation
Logic for Effect Handlers. https://github.com/DeVilhena-Paulo/blaze.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerstrom, Anil Madhavapeddy, K. C. Sivaramakrishnan, and Leo White. 2017.
Concurrent System Programming with Effect Handlers. In Trends in Functional Programming (TFP) (Lecture Notes in
Computer Science, Vol. 10788). Springer, 98-117. https://kesrk.info/papers/system_effects_feb_18.pdf

Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. 2010. Abstraction for concurrent objects. TCS 411,
51-52 (2010), 4379-4398. doi:10.1016/].TCS.2010.09.021

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency.
In Logic in Computer Science (LICS). 442-451. https://iris-project.org/pdfs/2018-lics-reloc-final.pdf

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained
Concurrency and Logical Atomicity. Logical Methods in Computer Science 17, 3 (2021). https://arxiv.org/abs/2006.13635v3

Lennard Gaher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek
Dreyer. 2022. Simuliris: a separation logic framework for verifying concurrent program optimizations. Proceedings of the
ACM on Programming Languages 6, POPL (2022), 1-31. https://doi.org/10.1145/3498689

Haskell Community. 2023. Alternative and MonadPlus. https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus

Daniel Hillerstrém and Sam Lindley. 2016. Liberating effects with rows and handlers. In International Workshop on
Type-Driven Development (TyDe@ICFP). 15-27. https://homepages.inf.ed.ac.uk/slindley/papers/links-effect.pdf

Chung-Kil Hur, Derek Dreyer Georg, Neis, and Viktor Vafeiadis. 2012. The marriage of bisimulations and Kripke logical
relations. In Principles of Programming Languages (POPL). ACM Press, 59-72. https://doi.org/10.1145/2103656.2103666

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In International Conference on
Functional Programming (ICFP). 256-269. https://iris-project.org/pdfs/2016-icfp-iris2-final.pdf

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground
up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),
e20. https://people.mpi-sws.org/~dreyer/papers/iris- ground-up/paper.pdf

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
monoids and invariants as an orthogonal basis for concurrent reasoning. In Principles of Programming Languages (POPL).
637-650. https://plv.mpi-sws.org/iris/paper.pdf

Ohad Kammar, Paul B. Levy, Sean K. Moss, and Sam Staton. 2017. A monad for full ground reference cells. In Logic in
Computer Science (LICS). https://10.1109/LICS.2017.8005109

Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell (Haskell ’15). 94-105. doi:10.1145/2804302.2804319

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,
and Derek Dreyer. 2018. MoSeL: a general, extensible modal framework for interactive proofs in separation logic.
Proceedings of the ACM on Programming Languages 2, ICFP (2018), 77:1-77:30. https://doi.org/10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The essence of
higher-order concurrent separation logic. In European Symposium on Programming (ESOP) (Lecture Notes in Computer
Science, Vol. 10201). Springer, 696—723. https://iris-project.org/pdfs/2017-esop-iris3-final.pdf

Robert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in higher-order concurrent separation logic. In
Principles of Programming Languages (POPL). https://cs.au.dk/~birke/papers/ipm-conf.pdf

Robbert Krebbers, Luko van der Maas, and Enrico Tassi. 2025. Inductive Predicates via Least Fixpoints in Higher-Order
Separation Logic. In Interactive Theorem Proving (ITP). https://robbertkrebbers.nl/research/articles/iris_inductive.pdf

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In Workshop on Mathematically Structured
Functional Programming (MSFP), Vol. 153. 100-126. https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/02/paper-20.pdf

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, KC Sivaramakrishnan, and Jéré6me Vouillon.
2025. The OCaml system: Documentation and user’s manual. https://ocaml.org/manual/5.3/index.html

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Principles of Programming Languages (POPL).
https://homepages.inf.ed.ac.uk/slindley/papers/frankly.pdf

Craig McLaughlin. 2020. Relational reasoning for effects and handlers. Ph.D. Dissertation. University of Edinburgh, UK.
doi:10.7488/ERA/537

Andrew Pitts and Ian Stark. 1999. Operational reasoning for functions with local state. Cambridge University Press, 227—-274.

Gordon D. Plotkin and Matija Pretnar. 2008. A Logic for Algebraic Effects. In Logic in Computer Science (LICS). 118-129.
https://homepages.inf.ed.ac.uk/gdp/publications/Logic_Algebraic_Effects.pdf

Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In European Symposium on Programming (ESOP)
(Lecture Notes in Computer Science, Vol. 5502). Springer, 80-94. https://homepages.inf.ed.ac.uk/gdp/publications/Effect
Handlers.pdf

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/DeVilhena-Paulo/blaze
https://kcsrk.info/papers/system_effects_feb_18.pdf
https://doi.org/10.1016/J.TCS.2010.09.021
https://iris-project.org/pdfs/2018-lics-reloc-final.pdf
https://arxiv.org/abs/2006.13635v3
https://doi.org/10.1145/3498689
https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus
https://homepages.inf.ed.ac.uk/slindley/papers/links-effect.pdf
https://doi.org/10.1145/2103656.2103666
https://iris-project.org/pdfs/2016-icfp-iris2-final.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://plv.mpi-sws.org/iris/paper.pdf
https://10.1109/LICS.2017.8005109
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/3236772
https://iris-project.org/pdfs/2017-esop-iris3-final.pdf
https://cs.au.dk/~birke/papers/ipm-conf.pdf
https://robbertkrebbers.nl/research/articles/iris_inductive.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/paper-20.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/paper-20.pdf
https://ocaml.org/manual/5.3/index.html
https://homepages.inf.ed.ac.uk/slindley/papers/frankly.pdf
https://doi.org/10.7488/ERA/537
https://homepages.inf.ed.ac.uk/gdp/publications/Logic_Algebraic_Effects.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/Effect_Handlers.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/Effect_Handlers.pdf

A Relational Separation Logic for Effect Handlers 111:29

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (Dec.
2013). https://Imcs.episciences.org/705

Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. In Mathematical Foundations of Programming
Semantics (Electronic Notes in Theoretical Computer Science, Vol. 319). Elsevier, 19-35. https://doi.org/10.1016/j.entcs.2015.
12.003

Alex Simpson and Niels Voorneveld. 2019. Behavioural Equivalence via Modalities for Algebraic Effects. ACM Transactions
on Programming Languages and Systems 42 (Nov. 2019). doi:10.1145/3363518

Simon Spies, Lennard Gaher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022. Later
credits: resourceful reasoning for the later modality. In International Conference on Functional Programming (ICFP).
https://doi.org/10.1145/3547631

Wenhao Tang, Daniel Hillerstrom, Sam Lindley, and Garrett J. Morris. 2024. Soundly Handling Linearity. In Principles of
Programming Languages (POPL), Vol. 8. ACM Press, 1600—-1628. doi:10.1145/3632896

Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerstrém, Sam Lindley, and Anton Lorenzen. 2025. Modal Effect
Types, In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). Proceedings of the ACM on
Programming Languages 9. doi:10.1145/3720476

The Iris Team. 2025. Iris Fixpoint Operators. https://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris/bi/lib/fixpoint_mono.v

The Rocq Prover development team. 2025. The Rocq Prover. https://rocq-prover.org/

Amin Timany and Lars Birkedal. 2019. Mechanized Relational Verification of Concurrent Programs with Continuations.
Proceedings of the ACM on Programming Languages 3, ICFP (July 2019), 105:1-105:28. https://doi.acm.org/10.1145/3341709

Orpheas van Rooij and Robbert Krebbers. 2025. Affect: An Affine Type and Effect System. In Principles of Programming
Languages (POPL), Vol. 9. ACM Press, Article 5, 29 pages. doi:10.1145/3704841

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue. In Certified Programs and
Proofs (CPP). 76-90. https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf

Simon Friis Vindum, Dan Frumin, and Lars Birkedal. 2022. Mechanized verification of a fine-grained concurrent queue from
meta’s folly library. In Certified Programs and Proofs (CPP). ACM Press, 100—-115. https://doi.org/10.1145/3497775.3503689

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. In Principles of Programming
Languages (POPL), Vol. 3. ACM Press, 5:1-5:29. https://www.cs.cornell.edu/andru/papers/tunnel-eff/tunnel-eff.pdf

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers. 2016. Accepting blame for safe
tunneled exceptions. In Programming Language Design and Implementation (PLDI). 281-295. https://www.cs.cornell.edu/
andru/papers/exceptions/exceptions-pldi16.pdf

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://lmcs.episciences.org/705
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/3363518
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3632896
https://doi.org/10.1145/3720476
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris/bi/lib/fixpoint_mono.v
https://rocq-prover.org/
https://doi.acm.org/10.1145/3341709
https://doi.org/10.1145/3704841
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://doi.org/10.1145/3497775.3503689
https://www.cs.cornell.edu/andru/papers/tunnel-eff/tunnel-eff.pdf
https://www.cs.cornell.edu/andru/papers/exceptions/exceptions-pldi16.pdf
https://www.cs.cornell.edu/andru/papers/exceptions/exceptions-pldi16.pdf

111:30 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

A Language

ex=v|x|ee|letx=eine| (e,e)
| ee1]e.2|ifetheneelsee

match e with
| linlx = e
linry=e

vi=() | true|false|n|recfx.e| (v,0)
| inlo|inro| ¢ | cont /K | kont K
K:=[]|eK|Kov|letx=Kine
| letx=0vinK | (e, K) | (K, 0)
K.1|K.2|ifKtheneelsee
match K with

| inle | inre

| leteffectE ine | performE e |
handle e with

| | effectE x, rec’kasmulti’ = e | l'inlx=e [inlK|inrK
ly=e linry=e
| refe|le|e«e|forke|cas(e,e,e) | perform $E K
. handle K with
handle e with ° .2
| | effect $E x, rec’ k asmulti’ = e I : effect St x, rec kasmulti’ = e
! y=e

ly=e
| refK|!K|e—K|K«wv

| GERSSERC | cas(e,e,K) | cas(e,K,v) | cas (K,v,0)

(a) Syntax of values, expressions, and evaluation contexts. (Runtime terms are displayed in gray.)

EFFECT

{€li —~ K[leteffectE ine]];0;5} $E¢6

FORK
{€li— K[forke]]; o; 56} n=|e|

{€li— K[e{$E/E}]]; o; S W {$E}}

ALLOC
{€li— K[refuv]];0;6} f¢o

{éli— K[!]]; o[t — 0v]; 63

HANDLE-OS

{e[i— K[Q], n—e]; 0; 6

PURE
ey —p ey {€[i Klel]]; o; 8}

{eli = Kle:]]; 0; 6}

H =handle [] witheffect $E x, rec’ k= h|y=r

$E ¢ L(K) l¢o

K" = if deep(H) then H[K'] else K’

o’ = o[t - true]
w = cont ¢ K"

{€li — K[H[K'[perform $E v]]]]; o; 63}

— {é[i = K[h{o/x,w/k}]]; o’; 63

(b) Operational rules.

BETA

(recfx.e)v —p e{(recfx.e)/f,v/x}

HANDLE-MS

H = handle [] witheffect $E x,

$E ¢ Z(K)

MULTI-SHOT
(kont K) v —, K[v]

rec’ kasmulti=>h|y=r

K’ = if deep(H) then H[K] else K

H[K[perform $E v]] —, h{v/x, kont K’ /k}

(c) Pure-reduction rules.

Fig. 11. Syntax and semantics of A-blaze.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:31

B Logic
B.1 Iris instantiation and derived resources

Name ‘ Type ‘ Purpose
Modelling of the implementation-side
points-to connective (_ —; _).
Modelling of the implementation-side
label predicate (label; (_, _)).
Modelling of the ghost thread-pool
assertion (_ = _).
Modelling of the specification-side
points-to connective (_ s _).
Modelling of the specification-side label
predicate (labels(_, _)).

implStore | Auth(Loc fin, (DFrac x AgVal))

implLbls | Auth(Lbl . (DFrac x Ag Unit))

specPool Auth(N L™ Ex Expr)

specStore | Auth(Lbl S, (DFrac x AgVal))

specLbls | Auth(Lbl S, (DFrac x Ag Unit))

Fig. 12. Global ghost variables.

forkPost = A_. True
statelnterp(o, 0) = ownStorel(a) x ownLbls; (5)

latersPerStep(n) = n

Fig. 13. Definition of Iris-instantiation-related predicates (forkPost, statelnterp, and latersPerStep).

N
specCix = p. ‘35 o,8. p—"{€;0;8} * ownPools(€) * ownStores(c) = ownLblss(5) ‘spec

where ownPools (€) ‘EQLL&%&EE%%@}T“’“P""l

*********************** \ specStore

ownLblss(8) =1 ;U ;E’e’ s L5E > (1, 7e{g7 (*)*)f}f‘ “specLbls

specN = 'spec' (€ String)

************* Store
S impls ime2iofi ex(e) ™™
-y o {¢ — (dgq, ag(v))} | mpistore e v \specStore
fffffffffffffffffff implLbls [sov 2! 9if,’j£dﬂa§g£q)),}i
labeli($E» dq) = ‘ o {$E = (dq, ag())}‘ ******************* specLbls

Fig. 15. Implementation-side and specification-side resources.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:32 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

B.2 blaze

MONOTONICITY-GEN-%
e; 3« e (L) {R} LM OmVYoy, v R(vy, v,) = S(vy, 0y)

er Sx er (OmM) {S}

EXHAUSTION-GEN-%
Z(Kp) Cls; Z(K,) C s,
e S« er (M) {R} M= (s, Isy, T) = L N = (Isg, Isy, F) : (OmL)
{Dmvvl, or. R(vy, 0,) = Kj[v1] 3% Kr[o,] (N) {S}
OmYey, e/ ((Isg, Isy) ' T) < e 3« e, (M) {R} — Ki[e]] 34 Ki[e;] (N) {S}

K; [el] 3« K [er] <N> {S}

[l
(Is, Isy, OmT) = Om L

Oml]
Om(lsy, Isy, T) = L

1> 11>

Fig. 16. Generalised reasoning rules in blaze.

B.3 Soundness
Definition B.1 (Safe).
e’ eValA ¢(e)

0 ;0;0 * s
{[|—>€] }_> — vV {[0+—>e']L+Jef;c7;5}—>

safe(e, §) = Ve', €, o, 0. , -
0 Wer;0;0 ",
{[0+— €] er; 0 3 de (0’ ;5 ;3

Definition B.2 (Terminates).
terminates(e,) = Fo. p(v) A{[0—¢€]; 0; 0} >* {[0—>0v]W_; _;_}
THEOREM B.3. Ift ¢; S e, (L) {" ¢}, then safe(e;, Avj. terminates(e,, Avy. $(vy, v,))).

C Case studies
C.1 State
Examples adapted from Biernacki et al. [2018, §4.2]:

run_ask_tell = fun main.
let effect Ask in
let effect Tell in
let ask = fun _. perform Ask () in
let tell = funy. perform Tell yin
let run_ask = funy main’. handle main’ () witheffect Ask (), k => ky|z= z in
let run_tell £ fun main’.
handle main’ () witheffect Tell y, k = run_asky (fun_. k ()) |z= =z
inrun_tell (fun_. run_ask @ (fun _. main ask tell))

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers

run_cell = fun main.
leteffectCell in

let get = fun_. perform Cell (inl ()) in
let set = funy. perform Cell (inry) in
let run = fun main.
handle main() with
| effect Cell request, k = funx.
match request with
linl) = kxx
linry=kQuy
ly= fun_.y
inrun (fun_. main get set) @
C.2 Concurrency

FORK-L FORK-R

i=e e; < e {True} K[Olse(T){R} Viiee e sK[OQ](T){R}
K; [fOI"k el] < e; <T> {R} e s K[[’FOI"k er] <T> {R}

LOGICAL-FORK

i= K ler]

erse{R} Yo, v.. R(op, 0p) ~ i 2 Ke[o,] = Ki[vg] 5 €/ (T){S}
Kiler] < e, (T) {S}

THREAD-SWAP
i Kle]

Vj, K. j= K'[e.] = ¢ < e {v;_. To,.. j= K'[v]] * R(vj, v}.)}
er 3 e (T){R}

Fig. 17. Reasoning rules for concurrency in baze.

runCoopSpec =

O Vmainy, main,.
DVasyncl, async,, awaity, awaity, promise, L.
asyncSpec(async,, async,, promise, L) —

run_coop; maing S«
. . . ; —* :
awaitSpec(await,, await,, promise, L) —x run_coop, mainy {True}
mainy async, await; S, maing async, await, (L) {True}

asyncSpec(async,, async,, promise, L) =

O Vtask,, tasky, S.
task; () S« tasky O (L) {vyvr. OS(v, 0,)} =
async, tasky 3. async, tasky (L) {p1 p2. O promise(ps, pa, S)}

awaitSpec(awaity, awaity, promise, L) = OVp1, pa, S
promise(py, pa, S) = awaity p; Sx awaity po (L) {vjv,. OS(vy, vy)}

Fig. 18. Async/await case study: Specification.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:33

111:34 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers
Relational theory.
Coop = Async ® Await
Async(perform $Coop (inl task;), fork (task,()), Q) = 3S.
> task; () S« taskz () ([([$Coop], [$Await], Coop)]) {v;v,. O S(vy, vr)} *
Vp1, pz. promise(py, pa, S) = Q(p1, p2)
Await(perform $Coop (inr p;), perform $Await p,, Q) = 3S.
promise(py, p2, S) * Yoy, v,. OS(vy, v,) = Q(oy, vy)

promise(py, p2, S) = Jr. inMap(py, pa, 7, S)

Ghost resources.

A

****** T inMap(pla pZ, T, S) = }ro {(pl» PZ, T) — S}J

token(r) = lex(e)| e

***** isMap(M) * oM
Invariants and predicates.

queuelnv(q, ks, ks’) = isQueue(q, ks.1) =
(% (k, (. K))eks - 3er- j = Kle,] * ready(q, kO, er)) = (% (j.x))eks - 30r- j = K[o,])

promiselnv = AM. isMap(M) *
p1 i inlo « OS(vy, o)

Fo;, v,. .
L r po s inlo, * token(r)

*{(pl,pz,r)HS}eM- v p1 5 inrks.1
Tks. P2 s inrks.2

X (ky, k) eks - Waiting(q, S, ki, ko)

ready(q, e}, ;) = Vks, ks'. > promiselnvq — > queuelnv(q, ks, ks’) —
e S« e ([([$Coop], [$Await], 1)]) {queuelnv(q, [], ks+ ks')}

waiting(q, S, k1, k) = Vo, v,. OS(vy, v,) =« ready(q, (k10;), (kz0p))

Fig. 19. Async/await case study: Internal logical definitions.

C.2.1 Async/await - Part I.
C.2.2 Async/await — Part II.

TrEOREM C.1.
terminates(run_coop, deadlock, A_. True)

Definition C.2.

diverges(e) = safe(e, A_. False)

THEOREM C.3.
diverges(run_coop, deadlock)

COROLLARY C.4.
=(F run_coop, deadlock 34 run_coop, deadlock {True})

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:35

C.3 Non-determinism
Example of a derivable refinement using the relational theory Nd:

(letx=0or (1or2)in if (failor true) thenxor (x+1) else fail) <,
(letx=(@or1)or2inxor (x+1)) (([$ND], [$ND], Nd) :: L) {=}

C.3.1 Invariants. We follow ReLoC [Frumin et al. 2021]’s approach to add support for invariants:
we add two general rules for allocating and closing invariants and one rule for opening invariant
per atomic instruction. Effectively, this approach consists of three steps:

(1) Masks. First, we make surgical changes to the model of baze to parameterize the refinement
relation on masks [Jung et al. 2018, §2]. These surgical changes are shown in Figure 20. The
model of blaze can then be accordingly modified in a straightforward way (Figure 21).

(2) Invariant rules. Then, based on this updated model, we state and prove rules for allocating,
closing, and opening invariants (Figure 22). As noted, the rules for allocating and closing
invariants are general, whereas the rules for opening invariants are specific to atomic instruc-
tions. The rules for closing and opening invariants depend on the opaque assertion closelnv,
which is internally defined as follows:

closelnvy(P) £ > P (T\NT)skT True

(3) Step rules. Finally, we must add rules to allow partial execution on the specification side
of the refinement under an arbitrary mask &. Such rules are necessary because, under
the hood, partial-execution-style reasoning on the specification side requires opening the
invariant spec/N in specCtx (see the definition of specCtx in Figure 14). Therefore, to allow
the application of such rules after opening an invariant N, we must show that specN # N,
because, otherwise, we could be opening the same invariant twice. The updated rules appear
in Figures 24 and 25.

Os (e, er, S) = Vi, K. specCtx — i = Kle,| .=k wp e {v;. Jo,. i = K[ov,] * S(v, 0,)}
e 3e{T){R}s 2 VK, Ky, S. {R}K; S K. AT) {S} = Os(Ki[er], K [er], S)
N {Vol, o R(os, v,) = O+ (Ki[o1], K, [or], S)

11>

>

RIS K TOASE 2 M ey 6. 7 < e 5 e {RY — Or (Kiledl, Kole], S)

>

T wese{RY = 3Q.T (e, ey, Q) = O>Vey, €. Qe /) = e, 3 €.(T) {R}+

Fig. 20. Model of baze with masks.

e Sx er (L)Y {R}s = wvalid(L) — e 3 e, (interp(L)) {R}s

Fig. 21. Model of blaze with masks.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:36 Paulo Emilio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

ALLOC-INV. CLOSE-INV
>P e 3¢ (T){R}e closelnvy(P) — »P e Se(T){R}+r
e1 Se(T){R}s er Ser (TY{R}+ 1)

LOAD-OPEN-INV
N > P —x closelnvp(P) — Jo. » £ ¥>; 0 * > ((s 0 — Ki[0] < e (T {R}(T\NT))

Ki['0] s e (T)Y{R}+

STORE-OPEN-INV
(PN o P closelnvn(P) ~ 5 £ 155 _ 5 » (£ 0 = KI[O] S € (T) (R} + 1))

K[t <« v] 3 e (T){R}+

Fig. 22. Reasoning rules for allocating, closing, and opening invariants in baze.

ALLOC-INV-% CLOSE-INV-%
P (PN e h e (L) (R closelivy(P) »P e %u e (L) {R}+

e S« e (L) {R}s e Sx er (LY {R} (+ w1

LOAD-OPEN-INV-%
N > P —x closelnvy(P) — Jov. » ¢ rq—>i v x> (l’ Fq—>i v = Ki[v] 3« e (£) {R}(T\N‘))

Kl[![] Sx er <-£> {R}T

STORE-OPEN-INV-%
PN o P closelnvy(P) ~ >0 oy _ % b (05 0 = Ki[O] 3 & (L) {RY (1 x1))

K[t < v] 3w e (LY{R}+

Fig. 23. Reasoning rules for allocating, closing, and opening invariants in blaze.

STEP-R-MASK
specNT €& ep—pel e sK[e](T){R}e

e; 3 Kle-] (T) {R}s

LOAD-R-MASK . STORE-R-MASK
specNT cé =] specNT cé >
q
{50 —xe 3K[0](T){R}s t=sv—+e SK[OI(T){R}e
et SK[M](TY{R}e e S K[t —o](T){R}s

Fig. 24. Specification-side rules under arbitrary masks in baze.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Relational Separation Logic for Effect Handlers 111:37

STEP-R-MASK-%
speceNT C & er —p €, e 3« K[e/] (T){R}s

e 3 Kle,] (T) {R}s

LOAD-R-MASK-% . STORE-R-MASK-%
specNTQS [g 0 specNTgc‘] (>
q
Cs 0 —x e 3% K[o](T) {R}s o500 = e 3% K[O](T) {R}e
er Sx K[1](T){R}s €1 Sx K[l 0] (T) {R}s

Fig. 25. Specification-side rules under arbitrary masks in blaze.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Overview
	2.1 Modular reasoning about effects: handler versus handlee
	2.2 Flexible reasoning: handler-based versus handler-free implementations
	2.3 Context-local relational reasoning

	3 Language
	3.1 Syntax
	3.2 Semantics

	4 Logic
	4.1 baze: The base logic
	4.2 blaze: A logic for effect handlers with dynamic labels
	4.3 Support for one-shot continuations
	4.4 Soundness

	5 Case Studies
	5.1 Concurrency
	5.2 Algebraic effects: Haskell-like non-determinism

	6 Related Work
	7 Future Work
	References
	A Language
	B Logic
	B.1 Iris instantiation and derived resources
	B.2 blaze
	B.3 Soundness

	C Case studies
	C.1 State
	C.2 Concurrency
	C.3 Non-determinism

