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Effect handlers offer a powerful and relatively simple mechanism for controlling a program’s flow of execution.

Since their introduction, an impressive array of verification tools for effect handlers has been developed.

However, to this day, no framework can express and prove relational properties about programs that use

effect handlers in languages such as OCaml and Links, where programming features like mutable state and

concurrency are readily available. To this end, we introduce blaze, the first relational separation logic for effect
handlers. We build blaze on top of the Iris framework for concurrent separation logic in Rocq, thereby enjoying

the rigour of a mechanised theory and all the reasoning properties of a modern fully-fledged concurrent

separation logic, such as modular reasoning about stateful concurrent programs and the ability to introduce

user-defined ghost state. In addition to familiar reasoning rules, such as the bind rule and the frame rule,

blaze offers rules to reason modularly about programs that perform and handle effects. Significantly, when

verifying that two programs are related, blaze does not require that effects and handlers from one program be

in correspondence with effects and handlers from the other. To assess this flexibility, we conduct a number

of case studies: most noticeably, we show how different implementations of an asynchronous-programming

library using effects are related to truly concurrent implementations. As side contributions, we introduce

two new, simple, and general reasoning rules for concurrent relational separation logic that are independent

of effects: a logical-fork rule that allows one to reason about an arbitrary program phrase as if it had been

spawned as a thread and a thread-swap rule that allows one to reason about how threads are scheduled.

1 Introduction
Effect handlers [Plotkin and Pretnar 2009] are a powerful programming abstraction that separates

the use of an effect from its implementation, allowing programmers to write effectful code indepen-

dently of how these effects are implemented. Its programming interface offers the ability to perform
and to handle effects. Performing an effect is similar to raising an exception: execution is suspended

and control is transferred to an enclosing pre-installed handler. Handling an effect is also similar to

handling an exception with the key difference that, in addition to the effect’s payload, the effect

handler also has access to a first-class representation of the suspended program, a continuation.
When invoked, the continuation resumes the suspended program, but, as a first-class value, the

continuation can also be discarded or stored in memory to be invoked later.

The ability to suspend and resume programs can be used to implement interesting features such

as coroutines [de Moura and Ierusalimschy 2009] and promise-style asynchronous-programming

libraries [Dolan et al. 2017]. However, the ability to manipulate continuations is also dangerous. A

continuation can capture resources. It may also contain code that must eventually be called to free

up these resources. So, if the continuation is discarded, if it becomes unreachable, or if, for some

other reason, it is not invoked, then some resources may never be released. Users of effect handlers

must also make sure that the operation of performing an effect is always enclosed by a handler,

otherwise, like an uncaught exception, an unhandled effect would cause a runtime error. For these

reasons, effect handlers are widely seen as an advanced programming feature to be used with care.
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An impressive range of tools to help programmers to reason about programs with effect handlers

and to avoid these programming errors has been introduced. Programming languages such as

Koka [Leijen 2014], Links [Cooper et al. 2006; Hillerström and Lindley 2016] and Effekt [Brachthäuser

et al. 2020], for example, have type systems that statically ensure effect safety: unhandled effects are
statically ruled out. Multiple other type systems with similar guarantees, covering a comprehensive

portion of the design space of handlers, can be found in the literature [Bauer and Pretnar 2014;

Biernacki et al. 2018, 2019, 2020; Brady 2013; de Vilhena and Pottier 2023; Kiselyov and Ishii 2015;

Lindley et al. 2017; Tang et al. 2024, 2025; van Rooij and Krebbers 2025; Zhang and Myers 2019].

In this paper, we are interested in expressing and verifying relational properties of programs

with handlers, namely program refinement and program equivalence. These relational properties
have several interesting applications. One could specify a complex but efficient algorithm or data

structure in terms of a simple but inefficient counterpart, or express the correctness condition of

linearizability for concurrent programs using program refinement [Filipovic et al. 2010]. Relational

reasoning also plays a key role in compiler verification [Allain et al. 2025; Gäher et al. 2022].

The study of relational properties of programs with effect handlers is not new. Building on a logic

to reason about equality of programs using effects described by an algebraic theory [Plotkin and

Pretnar 2008], Plotkin and Pretnar [2013] introduce the notion of correctness of an effect handler as

a relational property: the handler implementation must validate the equations of the corresponding

algebraic theory. This seminal work has spawned a fertile investigation of relational logics for

effect handlers [McLaughlin 2020; Simpson and Voorneveld 2019].

In prior work, relational reasoning is limited to a strictly functional setting deprived of built-in

imperative features. To verify the correctness of a handler implementation that makes use of

imperative features such as mutable state, the algebraic approach of Plotkin and Pretnar [2013]

requires the user to parameterize the correctness statement with an algebraic theory of state.

Although denotational models for ground store [Kammar et al. 2017] (that is, store where cells can

hold integers, pairs, sums, and references to other cells, but not functions or continuations) and

for concurrency under similarly restricted forms of state exist, to our knowledge, ground store

and, consequently, unrestricted higher-order store still lack an algebraic treatment. This limitation

precludes the application of previous relational-reasoning approaches to programming languages

like Links and OCaml, which, in addition to user-defined effects and handlers, have ready support

for heap-allocated mutable state. The ability to store continuations on the heap is crucial in the

effect-handler-based implementations of asynchronous-programming libraries that we study in this

paper (§5.1). Moreover, although user-defined effects and handlers offer a modular basis for effectful

programming, it is often the case that the handler-based implementation of an effect is obscured by

the combination of advanced programming patterns, whereas its handler-free implementation can

be derived directly using imperative features. Therefore, from a reasoning perspective, it is desirable

to establish a formal statement relating a user-defined effect to its imperative counterpart. For

example, can the the operation perform Fork task, which performs the user-defined effect Fork,
be seen as the operation fork (task()), which directly spawns a new thread?

To overcome these limitations and address this question, we introduce blaze, the first relational
logic for a language supporting effect handlers, heap-allocated state, and primitive concurrency

and also the first relational separation logic for effect handlers. We build blaze on top of the Iris

framework [Jung et al. 2016, 2018, 2015; Krebbers et al. 2018, 2017a,b] in the Rocq prover [The

Rocq Prover development team 2025], thus providing users with the comfort of a proof assistant,

the confidence of a mechanised theory, and the expressiveness of Iris, a modern higher-order

concurrent separation logic with powerful features such as support for higher-order functions,

user-defined ghost state, and invariants.
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The blaze logic in a nutshell. The refinement relation 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} of blaze informally states that

either 𝑒𝑙 diverges, or both 𝑒𝑙 and 𝑒𝑟 terminate with values 𝑣𝑙 and 𝑣𝑟 that satisfy the postcondition 𝑅.

The key ingredient is the parameter T , which specifies the relational theory under which the

refinement holds. This notion is inspired by Biernacki et al. [2018], but, whereas they use pure

(step-indexed) logic to express relational theories, we use separation logic, and, whereas they reason

at the level of a transparent logical interpretation of types, we rely on abstract reasoning rules

to manipulate an opaque notion of refinement. The novelty of blaze therefore does not lie in the

construction of its model, which follows Biernacki et al. [2018], but on the design of reasoning rules

that allow the relational verification of handlers at a high level of abstraction hiding any model-

specific details from the user of the logic. Moreover, by building this logic on top of separation

logic, we are able to express relational properties that involve primitive effects of the language and

that are conditional on the ownership of locations in the heap or on Iris-style ghost state.
1

Using relational theories we can relate user-defined effects to other user-defined effects, or relate

user-defined effects to the native imperative features of the language. Concrete examples include:

(1) Relating the state effect to the composition of reader and writer effects.
(2) Relating the state effect effect to primitive load and store operations (§2).

(3) Relating a handler-based implementation of concurrency to true concurrency (§5.1).

(4) Expressing algebraic laws, for example that the non-deterministic choice operator (either

implemented using a handler that collects a list of results or implemented using concurrency)

satisfies monoid laws (§5.2).

Biernacki et al. [2018, §4.2] already support (1). We port their result to blaze as part of our

Rocq formalisation [de Vilhena et al. 2026]. More crucially, by using separation logic to formulate

our relational theories, blaze also supports (2) and (3). Another application of blaze is (4), which
enables the formulation of a handler-correctness criterion in the style of Plotkin and Pretnar

[2013]. Expressing handler correctness in this style is novel in the context of higher-order state

and primitive concurrency. However, unlike Plotkin and Pretnar [2013]’s algebraic theories, we

note that algebraic theories expressed in blaze are not transitive due to a known limitation of

step-indexed relational logics [Birkedal and Bizjak 2012; Hur et al. 2012].

We give a semantics to the refinement relation 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} using an interpretation in Iris.

At the basis, we use Iris’s weakest precondition assertion to define observational refinement in the

same way as ReLoC [Frumin et al. 2021, §7.1]. Then, taking inspiration from Pitts and Stark [1999]’s

biorthogonality technique (used for the first time by Biernacki et al. [2018] in the context of effect

handlers) we define refinement, mutually inductively with two other relations, using Iris’s guarded

fixpoint operator.

While this layering of definitions makes it possible to bootstrap blaze, it also makes it infeasible

to carry out refinement proofs directly by unfolding these definitions, let alone carry out these

proofs in a compositional manner. We therefore take inspiration from ReLoC [Frumin et al. 2018,

2021] and Simuliris [Allain et al. 2025; Gäher et al. 2022] to develop a relational logic with a range

of high-level reasoning principles that abstract over the details of these definitions. Our high-level

logic provides a number of novel features:

(1) Our novel introduction and exhaustion rules make it possible to abstractly manipulate a

relational theory T . If T contains a relation between 𝑒𝑙 and 𝑒𝑟 , then the introduction rule

allows us to prove 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}. The exhaustion rule allows us to eliminate the dependency

on a theory T , provided that the relations included in T are correctly handled.

1
Adding support for primitive effects, particularly concurrency, in a relational separation logic is not as straightforward as

it may sound. Our proof rules for state directly follow ReLoC [Frumin et al. 2021]. However, as we discuss in §5.1.1, such an

approach does not go as smoothly for concurrency. We instead design original rules for reasoning about concurrency.
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(2) The bind rule makes it possible to focus on a subexpression and then continue with the

verification of the whole expression in which the subexpression is replaced with a value. It is

well known that, in the context of logics for effect handlers, a restriction on the bind rule is

necessary for soundness. We develop a new restriction that requires the bound contexts to

be traversable with respect to the relational theory T . This flexibility is crucial to support

dynamic effects labels.

We show the versatility of our approach through various extensions. We add support for dynamic

labels in the style of OCaml’s let exception construct, following de Vilhena and Pottier [2023].

Moreover, we add support for both one-shot and multi-shot continuations, taking inspiration

from van Rooij and Krebbers [2025]. Finally, as a side contribution needed to carry out some of our

case studies, we introduce new relational rules for concurrency. These rules are independent of

effect handlers and hold in any Iris-style relational logic such as ReLoC [Frumin et al. 2018, 2021].

Contributions. In sum, our contributions are the following:

(1) Novel relational logic. We introduce blaze, the first relational separation logic for handlers.

(2) Case studies.We conduct several challenging case studies including the verification that

multiple effect-handler-based implementations of concurrency refine truly concurrent ones.
(3) Novel reasoning rules. Our case studies led us to discover novel, simple, and general

reasoning rules in relational concurrent separation logic that are independent of handlers.

(4) Correctness with respect to algebraic theories.We show how the correctness of an effect

handler with respect to an algebraic theory can be stated and proved in blaze.
(5) Mechanised theory. We mechanise all our results, including soundness, in the Rocq prover.

2 Overview
In this section, we discuss the main challenges in designing a relational separation logic with

support for effect handlers. Our goal is to informally explain how blaze handles these challenges.
The examples are written in 𝜆-blaze, a calculus whose syntax and semantics we explain in §3.

In this section, we assume familiarity with functional programming and effect handlers. For the

unaccustomed reader, Pretnar [2015] provides a tutorial introduction to effect handlers.

Let us start by considering the following example:

countdown ≜ fun timer .
timer.set 10; while (timer.get() > 0) {timer.set (timer.get() - 1)}

The function countdown receives an object timer as an argument with two fields, get and set. It
assumes these fields implement the functionality to respectively access and update timer’s memory.

It uses this functionality to update the timer from 10 to 0 through decrements of 1.
The definition of countdown is modular on the implementation of the timer. In a language

with effect handlers, the programmer can exploit this generality by implementing get and set
as user-defined effects and providing different handlers to customise the implementation of the

effects performed by get and set. For example, assuming an effect $Timer is available, a generic
implementation of get and set can be obtained as follows:

timer ≜ {get = fun _. perform $Timer (inl ()); set = fun𝑦. perform $Timer (inr𝑦)}

In this definition, the operations get and set simply perform the effect $Timer. They use left
and right injections inl and inr to distinguish between a request sent by get and a request sent

by set. A $Timer handler eventually assigns meaning to get and set by replying to these requests.
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Here are two possible instances of such handlers:

run_st_passing ≜ funmain.
let run = fun ().

handle main() with
| effect $Timer request, 𝑘 ⇒ fun𝑥 .

match request with
| inl ()⇒ 𝑘 𝑥 𝑥
| inr𝑦 ⇒ 𝑘 ()𝑦

|𝑦 ⇒ fun _. 𝑦
in run() 0

run_heap ≜ funmain.
let 𝑟 = ref 0 in
handle main() with
| effect $Timer request, 𝑘 ⇒

match request with
| inl ()⇒ 𝑘 (!𝑟)
| inr𝑦 ⇒ 𝑟 ← 𝑦; 𝑘 ()

|𝑦 ⇒ 𝑦

Both receive a piece of client codemain that performs $Timer effects. The function run_st_passing
installs a handler that interprets $Timer effects in state-passing style, whereby the computation is

transformed into a function that takes the current state of the timer and outputs the timer’s final

state. In contrast, the function run_heap interprets $Timer effects by storing the current state of

the timer in a local reference 𝑟 . This implementation is arguably simpler than the state-passing

implementation of run_st_passing although presumably they implement the same functionality.

This observation motivates a key question: is it possible to show that run_st_passing is a refine-
ment of run_heap? That is, can run_heap be used as a specification of run_st_passing and, therefore,

as a reference implementation of get and set?
The notion of refinement is formalised in relational logics as the relation 𝑒𝑙 ≾ 𝑒𝑟 {𝑅}, where 𝑒𝑙

and 𝑒𝑟 are expressions and the postcondition 𝑅 is a relation on values. We refer to 𝑒𝑙 as the expression

on the implementation side and to 𝑒𝑟 as the expression on the specification side. The refinement

relation informally states that either 𝑒𝑙 diverges or both 𝑒𝑙 and 𝑒𝑟 terminate with outputs 𝑣𝑙 and 𝑣𝑟
such that 𝑅(𝑣𝑙 , 𝑣𝑟 ) holds, capturing the intuition that 𝑒𝑙 implements the same functionality described

by 𝑒𝑟 , because, informally, every output of 𝑒𝑙 corresponds to an output of 𝑒𝑟 related by 𝑅.

The question can thus be reformulated as how to establish a refinement between run_st_passing
and run_heap, such as the statement

impl
1
≾ impl

2
{𝑦𝑙 𝑦𝑟 . 𝑦𝑙 = 𝑦𝑟 },

where impl
1
≜ run_st_passing (fun (). countdown timer)

and impl
2
≜ run_heap (fun (). countdown timer), (1)

expressing the property that impl
1
and impl

2
have the same outputs.

To our knowledge, there are no relational logics with support for effect handlers and heap-

allocated mutable state and therefore no logics where such a relation can be derived. Addressing

this gap, we introduce blaze, the first relational separation logic with support for handlers. The

choice of a separation logic enables modular reasoning about state-manipulating programs such

as run_heap. The following subsections explain other interesting and novel aspects of blaze.

2.1 Modular reasoning about effects: handler versus handlee
In blaze, it is possible to state and prove Refinement 1. In fact, this refinement can be established in

a compositional way, whereby the proof is split into two parts: a proof that the handlers installed

by run_st_passing and run_heap are related and a proof that the handlees monitored by these

handlers are related. In the current example, this creates the following two subgoals:

countdown timer
?

≾ countdown timer (2)

∀main𝑙 , main𝑟 . main𝑙()
?

≾ main𝑟() −−∗ run_st_passing main𝑙 ≾ run_heapmain𝑟 {=} (3)

Refinement 2 relates the handlees and Refinement 3 relates run_st_passing and run_heap under

the assumption they receive related arguments. For brevity, we write “=” in Refinement 3 for the

postcondition 𝑦𝑙 𝑦𝑟 . 𝑦𝑙 = 𝑦𝑟 . Moreover, we use

?

≾ to denote a notion of refinement that is yet to be
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defined. Recall that the informal reading of countdown timer ≾ _ {_} states countdown timer either
diverges or terminates with a value. This standard notion of refinement _ ≾ _ {_} is therefore
insufficient, because, without a handler, the program countdown timer performs unhandled effects.

This limitation reveals a key challenge: to reason about the handlee independently of the handler,

it is necessary to generalise the standard notion of refinement to account for unhandled effects.

The blaze logic solves this challenge by parameterising the refinement relation with a relational
theory. A relational theory can be seen as a set of assumed refinements. Concretely, it is defined as a

set of triples (𝑒𝑙 , 𝑒𝑟 , 𝑄), where 𝑒𝑙 and 𝑒𝑟 are expressions and 𝑄 is a relation on pairs of expressions

called the return condition. In short, the return condition describes the condition under which 𝑒𝑙
and 𝑒𝑟 can return. For example, the return condition 𝑦𝑙 𝑦𝑟 . 𝑦𝑙 = 𝑦𝑟 states 𝑒𝑙 and 𝑒𝑟 can return only

when they terminate with the same values. In this case, the return condition 𝑄 can be seen as a

postcondition. The reading of (𝑒𝑙 , 𝑒𝑟 , 𝑄) then simply states that 𝑒𝑙 refines 𝑒𝑟 with postcondition 𝑄 .

For the purposes of this section, this first approximation is enough.

The general refinement relation in blaze has the form 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}, where T is the parame-

terised relational theory. When a relational theory is empty, we write 𝑒𝑙 ≾ 𝑒𝑟 {𝑅} which has the

same informal meaning as before. The informal reading of the general relation 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} is
that 𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] {𝑅} holds for every pair of contexts 𝐾𝑙 and 𝐾𝑟 that validate the theory T . A
pair of contexts 𝐾𝑙 and 𝐾𝑟 validate T when the refinements included in T hold under 𝐾𝑙 and 𝐾𝑟 ;

that is, if T includes the relation between two expressions 𝑒𝑙 and 𝑒𝑟 , then 𝐾𝑙 [𝑒𝑙 ] refines 𝐾𝑟 [𝑒𝑟 ]. This
general notion of refinement allows us to reason about programs 𝑒𝑙 and 𝑒𝑟 that perform unhandled

effects, because, when T is well-chosen, the contexts 𝐾𝑙 and 𝐾𝑟 that validate T are precisely those

that handle the effects performed by 𝑒𝑙 and 𝑒𝑟 . At the same time, the contexts 𝐾𝑙 and 𝐾𝑟 appear

only in the definition of 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}, which, during a verification task, need not be unfolded.

The theory T can thus be seen as a logical abstraction of the contexts under which 𝑒𝑙 and 𝑒𝑟 occur.

In the running example of Refinements 2 and 3, it is now possible to substitute

?

≾with a refinement

relation parameterised by a relational theory, say Timerrefl :

_

?

≾ _ ≜ _ ≾ _ ⟨Timerrefl⟩ {=}
There are two minimal requirements for the relational theory Timerrefl : (1) Timerrefl must include

sufficiently many relations so that countdown timer ≾ countdown timer ⟨Timerrefl⟩ {=} holds and
(2) Timerrefl must be sufficiently small so that run_st_passing main𝑙 ≾ run_heapmain𝑟 {=} holds
under the assumption that main𝑙() ≾ main𝑟() ⟨Timerrefl⟩ {=} holds. A choice of Timerrefl that

satisfies both requirements is one that includes only the following refinement:

∀𝑣 . perform $Timer 𝑣 ≾ perform $Timer 𝑣 ⟨Timerrefl⟩ {=} (4)

This is sufficient to prove countdown timer ≾ countdown timer ⟨Timerrefl⟩ {=}, because, as the
two expressions in this relation are same, every $Timer effect on one side corresponds to exactly

one $Timer effect on the other side. Therefore, when reasoning about performing an effect, it

suffices to apply Refinement 4 to conclude that, in both expressions, the results are the same.

Moreover, because Timerrefl includes only Refinement 4, it follows that, if 𝑒𝑙 ≾ 𝑒𝑟 ⟨Timerrefl⟩ {=}
holds for arbitrary expressions 𝑒𝑙 and 𝑒𝑟 , then it must be the case that every $Timer effect in 𝑒𝑙
corresponds to exactly one $Timer effect in 𝑒𝑟 . This assumption can be exploited by the proof

of run_st_passing main𝑙 ≾ run_heapmain𝑟 {=} to establish the relation between the two handlers.

2.2 Flexible reasoning: handler-based versus handler-free implementations
One of the motivations to establish the refinement between run_st_passing and run_heap is

that run_heap provides a simpler and more direct implementation of the timer when compared to

the state-passing implementation of run_st_passing. However, run_heap does not exploit non-trivial
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functionalities of effect handlers as the effect branch always immediately resumes the continuation.

This observation permits an implementation of the timer without effects:

ref_timer ≜ fun 𝑟 . {get = fun (). !𝑟; set = fun𝑦. 𝑟 ← 𝑦}

The question now is: can the refinement

impl
1
≾ impl

3
{=}, where impl

3
≜ let 𝑟 = ref 0 in countdown (ref_timer 𝑟), (5)

be established in blaze? Moreover, if possible, can the proof be done in a compositional way like in

the previous example, where reasoning about handlee and handler are carried out independently?

The answers to both questions are positive: the refinement can be established in blaze with a

compositional proof. Indeed, the proof of impl
1
≾ impl

3
{=} is split into two subgoals:

∀ℓ . ℓ 1/2↦→s 0 −−∗ countdown timer ≾ countdown (ref_timer ℓ) ⟨Timerℓspec⟩ {=} (6)

∀ℓ, main𝑙 , 𝑒𝑟 . ℓ
1/2↦→s 0 −−∗ main𝑙() ≾ 𝑒𝑟 ⟨Timerℓspec⟩ {=} −−∗ run_st_passing main𝑙 ≾ 𝑒𝑟 {=} (7)

Refinement 6 relates the handlee countdown timer to countdown (ref_timer ℓ) under the the-

ory Timerℓspec , which we introduce shortly. Refinement 7 is stated in an interesting way. It re-

lates run_st_passing main𝑙 to an arbitrary expression 𝑒𝑟 . Intuitively, the expression represents the

program countdown (ref_timer ℓ), but, thanks to the theory Timerℓspec , this specific program can be

entirely abstracted: all the information needed to carry out Refinement 7 is that main𝑙 refines 𝑒𝑟
under Timerℓspec .
The variable ℓ stands for the location to which 𝑟 (in impl

3
) is bound. As usual in relational

separation logics, each of the two programs in a refinement relation manipulates its own heap.

The points-to predicate _ ↦→s _ describes the state of the heap of the program on the specification

side, whereas _ ↦→i _ describes the state of the heap on the implementation side. The fraction

that appears on top of ↦→s represents a fractional ownership of ℓ : it grants read-only permission

to ℓ . Full ownership can be retrieved by combining two ℓ
1/2↦→s _ assertions. In the proof of 5,

fractional assertions ℓ
1/2↦→s _ are given to both the handlee and the handler. Full ownership is

therefore retrieved when the handlee performs an effect and ownership of the handlee’s fractional

assertion ℓ
1/2↦→s _ is temporarily transferred to the handler until the handlee is resumed.

Like Timerrefl , the theory Timerℓspec must fulfil two requirements: (1) the theory must be suf-

ficiently relaxed so that 6 can be established and (2) it must be sufficiently small so that the

terms main𝑙() and 𝑒𝑟 in 7 are tightly related. The first requirement now seems particularly chal-

lenging because Refinement 6 relates an effectful program to a non-effectful one. Fortunately,

relational theories are not limited to relations between only effectful expressions like in Timerrefl .
They can in fact express relations between arbitrary expressions. Taking advantage of this flexibility,

the Timerℓspec includes a relation between the effectful implementation of get and set fields of timer
and their heap-manipulating counterparts of ref_timer :

∀𝑥 . ℓ 1/2↦→s 𝑥 −−∗ perform $Timer (inl ()) ≾ !ℓ ⟨Timerℓspec⟩ {𝑦𝑙 𝑦𝑟 . 𝑦𝑙 = 𝑦𝑟 = 𝑥 ∗ ℓ
1/2↦→s 𝑥} (8)

∀𝑦. ℓ 1/2↦→s _ −−∗ perform $Timer (inr𝑦) ≾ ℓ ← 𝑦 ⟨Timerℓspec⟩ {𝑦𝑙 𝑦𝑟 . 𝑦𝑙 = 𝑦𝑟 = () ∗ ℓ 1/2↦→s 𝑦} (9)

From the perspective of the handlee, these relations guarantee that performing the effect $Timer
is similar to manipulating the memory location ℓ .

2.3 Context-local relational reasoning
A closer look at Refinements 8 and 9 reveals an important limitation. They apply only to pairs of

programs 𝑒𝑙 and 𝑒𝑟 where 𝑒𝑙 consists precisely of a single $Timer effect and 𝑒𝑟 consists precisely
of a single read or store operation. As such, they are insufficient to establish 6, because the calls

to get and set in countdown timer and in countdown (ref_timer ℓ) occur in the context of a larger

program, not as single operations.
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The key missing principle to address this limitation is the bind rule. The bind rule allows the user
to reason about a piece of code independently of the context under which this code is eventually

executed. In standard relational logics, the bind rule is formally stated as follows:

standard-bind 𝑒𝑙 ≾ 𝑒𝑟 {𝑦𝑙 𝑦𝑟 . 𝐾𝑙 [𝑦𝑙 ] ≾ 𝐾𝑟 [𝑦𝑟 ] {𝑅}} ⊢ 𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] {𝑅}
This rule is sound in blaze, but insufficient because it assumes the parameterised theory is empty.

A natural fix would be to decorate every occurrence of the refinement relation with a theory T :
unsound-bind 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑦𝑙 𝑦𝑟 . 𝐾𝑙 [𝑦𝑙 ] ≾ 𝐾𝑟 [𝑦𝑟 ] ⟨T ⟩ {𝑅}} ⊢ 𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] ⟨T ⟩ {𝑅}

The resulting rule is unsound. To see why, it suffices to consider the following counterexample,

where the effect $Id is assumed to be available:

𝑒true ≜ handle (perform $Id true) with effect $Id 𝑥, 𝑘 ⇒ 𝑘 𝑥 |𝑦 ⇒ 𝑦

If we further assume there is a theoryNeq that includes the refinement∀𝑏 ∈ Bool. perform $Id 𝑏 ≾
perform $Id 𝑏 ⟨Neq⟩ {≠}, then, using unsound-bind with both 𝐾𝑙 and 𝐾𝑟 instantiated as the $Id
handler, it is possible to establish the refinement 𝑒true ≾ 𝑒true ⟨Neq⟩ {≠}, which is false, because both

sides of the refinement terminate with true.
This counterexample suggests that to enable sound context-local reasoning, there must be some

restriction on the evaluation contexts 𝐾𝑙 and 𝐾𝑟 . In particular, the rule should not be applicable

when the contexts 𝐾𝑙 and 𝐾𝑟 contain handlers for the effects described by the theory T . In blaze, a
sound bind rule integrating these restrictions is formulated as follows:

bind

traversable(𝐾𝑙 , 𝐾𝑟 , T) T ⊑ F
𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑦𝑙 𝑦𝑟 . 𝐾𝑙 [𝑦𝑙 ] ≾ 𝐾𝑟 [𝑦𝑟 ] ⟨F ⟩ {𝑅}}

⊢ 𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] ⟨F ⟩ {𝑅}

The rule is applicable when there exists a theoryT included inF , such that traversable(𝐾𝑙 , 𝐾𝑟 , T)
holds. The predicate traversable(𝐾𝑙 , 𝐾𝑟 , T) intuitively states that 𝐾𝑙 and 𝐾𝑟 do not conflict with T ,
or, visually, that T can traverse 𝐾𝑙 and 𝐾𝑟 . It is defined in an abstract way with no reference to the

handlers in 𝐾𝑙 and 𝐾𝑟 . In the case of Timerrefl , it is possible to show this predicate holds for any

contexts 𝐾𝑙 and 𝐾𝑟 that contain no $Timer handler. In the case of Timerℓspec , the predicate holds for
any 𝐾𝑙 that contains no $Timer handler. No condition is imposed on 𝐾𝑟 in this case, because the

expressions on the right-hand side of Refinements 8 and 9 do not perform effects. The blaze logic
therefore enjoys a powerful context-local reasoning principle that is adjustable to the parameterised

theory. As we are going to show in §4.2, this principle is especially important to support reasoning

in the presence of multiple effect names.

3 Language
We introduce 𝜆-blaze, an untyped calculuswith formally defined syntax and semantics. The language

has support for heap-allocated mutable state and concurrency, both deep and shallow handlers,

both one-shot and multi-shot continuations, and dynamically allocated effect names. For most of

the paper, only deep handlers that capture multi-shot continuations are used. So, for the sake of

conciseness, we postpone the introduction of the syntax and semantics of one-shot continuations

to §4.3, where we explain the extension of the logic with support for this feature.

3.1 Syntax
Figure 1a shows the syntax of expressions, values, and evaluation contexts. The definition of

evaluation contexts reflects a right-to-left evaluation order. Every node in the syntax tree of an

evaluation context 𝐾 contains exactly one child, except for the empty context which contains none.

Thanks to this observation, a context 𝐾 can be seen as a list whose elements, called frames, are the
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𝑒F 𝑣 | 𝑥 | 𝑒 𝑒 | let 𝑥 = 𝑒 in 𝑒

| let effect E in 𝑒 | perform 𝜂 𝑒

|
handle 𝑒 with
| effect 𝜂 𝑥, 𝑘 ⇒ 𝑒
|𝑦 ⇒ 𝑒

| ref 𝑒 | !𝑒 | 𝑒 ← 𝑒 | fork 𝑒
𝜂F E | $E

𝑣F () | rec 𝑓 𝑥 . 𝑒 | (𝑣, 𝑣) | ℓ | kont 𝐾
𝐾F [] | 𝑒 𝐾 | 𝐾 𝑣
| let 𝑥 = 𝐾 in 𝑒 | let 𝑥 = 𝑣 in 𝐾

|
handle 𝐾 with
| effect $E 𝑥, 𝑘 ⇒ 𝑒
|𝑦 ⇒ 𝑒

| perform $E 𝐾 | ref𝐾 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣

(a) Syntax of expressions, values, and evaluation contexts. (Runtime terms are displayed in gray.)

effect

{®𝑒 [𝑖 ↦→ 𝐾 [let effect E in 𝑒]];𝜎;𝛿} $E ∉ 𝛿
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{®𝑒 [𝑖 ↦→ 𝐾 [𝑒{$E/E}]];𝜎;𝛿 ⊎ {$E}}

fork

{®𝑒 [𝑖 ↦→ 𝐾 [fork 𝑒]];𝜎;𝛿} 𝑛 = |®𝑒 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{®𝑒 [𝑖 ↦→ 𝐾 [()], 𝑛 ↦→ 𝑒];𝜎;𝛿}

alloc

{®𝑒 [𝑖 ↦→ 𝐾 [ref 𝑣]];𝜎;𝛿} ℓ ∉ 𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
{®𝑒 [𝑖 ↦→ 𝐾 [ℓ]];𝜎 [ℓ ↦→ 𝑣];𝛿}

pure

𝑒1 →p 𝑒2 {®𝑒 [𝑖 ↦→ 𝐾 [𝑒1]];𝜎;𝛿}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{®𝑒 [𝑖 ↦→ 𝐾 [𝑒2]];𝜎;𝛿}

(b) Operational rules.

beta

(rec 𝑓 𝑥 . 𝑒) 𝑣 →p 𝑒{(rec 𝑓 𝑥 . 𝑒)/𝑓 , 𝑣/𝑥}
multi-shot

(kont 𝐾) 𝑣 →p 𝐾 [𝑣]

handle

$E ∉ ℒ(𝐾)
𝐻 = handle [] with effect $E 𝑥, 𝑘 ⇒ ℎ |𝑦 ⇒ 𝑟

𝐻 [𝐾 [perform $E 𝑣]] →p ℎ{𝑣/𝑥, kont 𝐻 [𝐾]/𝑘}

(c) Pure-reduction rules.

Fig. 1. Syntax and semantics of 𝜆-blaze.

nodes in its syntax tree. We use the notation 𝐾 [𝐾 ′] to denote the context obtained by concatenating
these lists. The similar notation 𝐾 [𝑒] is used to denote the expression obtained by the operation of

filling 𝐾 with 𝑒 , characterised by the equations: [] [𝑒] = 𝑒 and (𝐾 [𝐾 ′]) [𝑒] = 𝐾 [𝐾 ′ [𝑒]].
Most of the syntactic constructs of the language are standard. In the following paragraphs, we

explain two aspects that are unusual: the syntax of function definitions and the distinction between

effect names and effect labels.

Function definitions. Functions are defined using the syntax rec 𝑓 𝑥 . 𝑒 . The variable 𝑥 is a formal

argument of the function. Its scope is 𝑒 . The variable 𝑓 is bound to the function definition itself (that

is, the entire term rec 𝑓 𝑥 . 𝑒). It can be used in the scope of 𝑒 to write recursive definitions. When 𝑓

does not occur in 𝑒 , we use the simpler notation fun𝑥 . 𝑒 . For function definitions with more than

one formal argument, we introduce the following syntactic sugar: fun ®𝑥 . 𝑒 ≜ fun𝑥0. . . . fun𝑥𝑛−1 . 𝑒
and rec 𝑓 ®𝑥 . 𝑒 ≜ rec 𝑓 𝑥0. fun

−−−−−−−−→𝑥1 . . . 𝑥𝑛−1 . 𝑒 , where 𝑛 = | ®𝑥 |.

Effect names and effect labels. Taking inspiration from previous work [Biernacki et al. 2020;

de Vilhena and Pottier 2023; Zhang and Myers 2019], the syntax of 𝜆-blazemakes a clear distinction

between effect names E and effect labels $E. Effect names are binders whose scope is delimited by

the construct let effect E in 𝑒 (following a syntax similar to OCaml’s let exception construct).

Effect labels appear at runtime after the execution of a let effect construct, which binds effect

names to effect labels. The motivation for introducing this distinction is to provide 𝜆-blaze with
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mechanisms to avoid the issue of colliding effect names [Biernacki et al. 2020; de Vilhena and Pottier
2023; Zhang and Myers 2019], when the same effect name is used in two unrelated pieces of code.

To give an example, consider the following implementation of an ask effect [Biernacki et al. 2018]
and the client code colliding, which installs an Ask handler over calls to the function it receives as

an argument:

run_ask ≜
fun𝑥 main. let effect Ask in let ask = fun _. perform Ask () in
handle main ask with effect Ask (), 𝑘 ⇒ 𝑘 𝑥 | 𝑧 ⇒ 𝑧

colliding ≜
fun ask0. let effect Ask in let ask1 = fun _. perform Ask () in

handle ask0() + ask1() with effect Ask (), 𝑘 ⇒ 𝑘 1 | 𝑧 ⇒ 𝑧

The collision occurs during the execution of run_ask 0 colliding. The call to ask0 in colliding
performs an Ask effect that should be handled by run_ask, but, at this moment, the innermost

handler is the one installed by colliding. If effect names were used to find the handlers, then the

call to ask0 would be handled by colliding’s handler.
This example illustrates the issue of collision of effect names: the name Ask is used with dif-

ferent purposes by two unrelated pieces of code. It would thus be desirable for the semantics

of let effect E in 𝑒 to take care of avoiding this collision of names. This is exactly what it does:

when let effect E in 𝑒 is executed, it allocates a fresh effect label $E which is substituted for E
in 𝑒 . At runtime, it is $E that is used to perform and handle effects. According to this semantics, the

program run_ask 0 colliding runs as expected, because, at runtime, the handlers installed by run_ask
and colliding handle effects for different labels.

3.2 Semantics
The semantics is defined using three sorts of runtime terms: memory locations ℓ , created by ref
instructions; multi-shot continuations kont 𝐾 , created by handlers during the handling of an effect;

and effect labels $E, which, as explained, are created by let effect instructions.
Memory operations follow a standard heap semantics [Jung et al. 2018]. The semantics of handlers

that capture multi-shot continuations is also standard [Pretnar 2015]. The semantics of let effect
follows [de Vilhena and Pottier 2023].

The semantics is formalised by a number of operational rules, of which the most relevant can be

seen in Figure 1b. The rules define a reduction relation between configurations of the form {®𝑒;𝜎;𝛿},
where ®𝑒 is a pool of running threads, 𝜎 is a store, and 𝛿 is a set of allocated effect labels. Rule alloc

captures the semantics of memory allocation where a fresh location ℓ is non-deterministically

chosen and initialised in 𝜎 with 𝑣 . Rule fork captures the semantics of fork 𝑒 , allocates a thread
to execute 𝑒 and returns (). Rule effect captures the semantics of let effect: to guarantee

freshness, the non-deterministically chosen label $E must not be in the set of pre-allocated labels 𝛿 .

Finally, Rule pure captures the semantics of pure reductions 𝑒 →p 𝑒
′
, partially defined in Figure 1c.

Rule beta is the standard beta reduction. Rule multi-shot shows how the invocation of a multi-

shot continuation kont 𝐾 restores 𝐾 as an evaluation context. Rule handle shows how control

is transferred to the effect branch ℎ of a handler in case of an effect. The termℒ(𝐾) denotes the
labels of the handlers in 𝐾 . The condition $E ∉ ℒ(𝐾) ensures 𝐻 is the innermost handler.

4 Logic
The logic consists of two main layers with independent notions of refinement and independent

reasoning rules. The first layer, baze, offers a base logic built directly on top of Iris [Jung et al. 2018].

The baze logic offers an expressive notion of refinement for arbitrary 𝜆-blaze programs. Reasoning

about programs with multiple effect labels in baze however can be challenging, motivating the

introduction of the second layer, blaze, which is built on top of baze and tailored for programs
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with dynamic labels. So far, we have used the name blaze for the collection of both logics. To avoid

confusion, from now on, we use the term blaze to refer exclusively to this second layer.

As noted in §1, the novelty of both logical layers lies in the design of a comprehensive set of

high-level reasoning rules (Figures 3 and 5) for the relational verification of programs with handlers.

The model of baze closely follows Biernacki et al. [2018]’s model of refinement, Allain et al. [2025]’s

domain of abstract protocols, and ReLoC [Frumin et al. 2021]’s model of observational refinement.
Moreover, the model of blaze closely follows the model of TesLogic [de Vilhena and Pottier 2023].

4.1 baze: The base logic
The refinement statement in baze takes the form 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}, where 𝑒𝑙 and 𝑒𝑟 are 𝜆-blaze
programs, T is a parameterised relational theory, and the postcondition 𝑅 is a predicate on pairs of

values. It intuitively means that, under any pair of contexts 𝐾𝑙 and 𝐾𝑟 that validate the theory T ,
either 𝐾𝑙 [𝑒𝑙 ] diverges or both 𝐾𝑙 [𝑒𝑙 ] and 𝐾𝑟 [𝑒𝑟 ] terminate with values 𝑣𝑙 and 𝑣𝑟 such that 𝑅(𝑣𝑙 , 𝑣𝑟 )
holds. The key to formalise this notion of refinement is thus to precisely formulate what is a

theory T and what it means for a pair of contexts to validate T .

4.1.1 Relational theories. A theory T is modelled as a predicate of type
2

iThy ≜ (Expr × Expr × (Expr × Expr→ iProp)) → iProp,

where iProp is the type of Iris assertions.3 Intuitively, the assertion T (𝑒𝑙 , 𝑒𝑟 , 𝑄) means that 𝑒𝑙 is

related to 𝑒𝑟 and that 𝑒𝑙 and 𝑒𝑟 can be replaced with any pair of expressions 𝑒′
𝑙
and 𝑒′𝑟 for which the

return condition 𝑄 (𝑒′
𝑙
, 𝑒′𝑟 ) holds. Perhaps the simplest example of a relational theory is the empty

theory ⊥, which does not include any relations: ⊥(𝑒𝑙 , 𝑒𝑟 , 𝑄) ≜ False.
For a slightly more involved example, consider the definition of theory Timerrefl from §2.1 relating

the effect $Timer4 to itself and asserting that both effects return the same output:

Timerrefl (perform $Timer 𝑣, perform $Timer 𝑣, 𝑄) ≜ �∀𝑤 ∈Val. 𝑄 (𝑤, 𝑤)
To express that both perform $Timer 𝑣 operations return the same output, the theory Timerrefl

asserts the return condition 𝑄 holds of any pair of copies of the same value: �∀𝑤 ∈Val. 𝑄 (𝑤, 𝑤).
This assertion is guarded by Iris’s persistently modality �. Typical separation-logic assertions, such

as the points-to assertion ℓ ↦→ 𝑣 , declare ownership of resources, so, by default, they cannot be

arbitrarily shared or duplicated. The persistently modality indicates when an assertion does not

claim ownership of ephemeral resources and thereby can be duplicated. Here, it is used to indicate

that the effect $Timer complies with a multi-shot policy whereby the operation perform $Timer 𝑣
can return multiple times. The return condition must hold every time the operation returns.

4.1.2 Context-closure operation. As defined, the theory Timerrefl suffers from the limitation high-

lighted in §2.3: Timerrefl is limited to relations between single perform expressions, when, in fact,

it is desirable for the theory to enjoy some form of context-local reasoning with which perform
expressions can be related under evaluation contexts. More abstractly, we wish to close a theory T
under contexts, so that, along rough lines, if T (𝑒𝑙 , 𝑒𝑟 , 𝑄) holds, then so does T (𝐾𝑙 [𝑒𝑙 ], 𝐾𝑟 [𝑒𝑟 ], 𝑃)
2
This type is similar to the type of semantic rows Eff from Biernacki et al. [2018, §3.2] and to the type of abstract protocols
from Allain et al. [2025, §6]. See §6 for an in-depth discussion.

3
Iris assertions include standard connectives and quantifiers, separation logic connectives (in particular, the separating
conjunction ∗ and the separating implication −−∗), and modalities whose purpose and meaning we explain as they appear.

4
In §2.1, we assume $Timer is available. Formally, this assumption means $Timer is created by a let effect instruction
placed at the global level.
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O(𝑒𝑙 , 𝑒𝑟 , 𝑆) ≜ ∀𝑖, 𝐾 . specCtx −−∗ 𝑖 Z⇒ 𝐾 [𝑒𝑟 ] −−∗ wp 𝑒𝑙 {𝑣𝑙 . ∃𝑣𝑟 . 𝑖 Z⇒ 𝐾 [𝑣𝑟 ] ∗ 𝑆 (𝑣𝑙 , 𝑣𝑟 )}
𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} ≜ ∀𝐾𝑙 , 𝐾𝑟 , 𝑆 . {𝑅}𝐾𝑙 ≾ 𝐾𝑟 ⟨T ⟩ {𝑆} −−∗ O(𝐾𝑙 [𝑒𝑙 ], 𝐾𝑟 [𝑒𝑟 ], 𝑆)

{𝑅}𝐾𝑙 ≾ 𝐾𝑟 ⟨T ⟩ {𝑆} ≜ ∧
{
∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ O(𝐾𝑟 [𝑣𝑟 ], 𝑆, 𝑆)
∀𝑒𝑙 , 𝑒𝑟 . T ◀ 𝑒𝑙 ≾ 𝑒𝑟 {𝑅} −−∗ O(𝐾𝑟 [𝑒𝑟 ], 𝑆, 𝑆)

T ◀ 𝑒𝑙 ≾ 𝑒𝑟 {𝑅} ≜ ∃𝑄. T (𝑒𝑙 , 𝑒𝑟 , 𝑄) ∗ � ⊲∀𝑒′
𝑙
, 𝑒′𝑟 . 𝑄 (𝑒′𝑙 , 𝑒

′
𝑟 ) −−∗ 𝑒′𝑙 ≾ 𝑒

′
𝑟 ⟨T ⟩ {𝑅}

Fig. 2. Model of baze.

for some return condition 𝑃 . To this end, we introduce the context-closure operation:

((ls𝑙 , ls𝑟 ) ⇃↾T)(𝑒𝑙 , 𝑒𝑟 , 𝑃) ≜

∃𝑒′
𝑙
, 𝑒′𝑟 , 𝐾𝑙 , 𝐾𝑟 , 𝑄.

𝑒𝑙 = 𝐾𝑙 [𝑒′𝑙 ] ∗ 𝑒𝑟 = 𝐾𝑙 [𝑒
′
𝑟 ] ∗ neutral(ls𝑙 , 𝐾𝑙 ) ∗ neutral(ls𝑟 , 𝐾𝑟 ) ∗

T (𝑒′
𝑙
, 𝑒′𝑟 , 𝑄) ∗ �∀𝑒′′

𝑙
, 𝑒′′𝑟 . 𝑄 (𝑒′′𝑙 , 𝑒

′′
𝑟 ) −−∗ 𝑃 (𝐾𝑙 [𝑒′′𝑙 ], 𝐾𝑟 [𝑒

′′
𝑟 ])

The context-closure of a theory T enables the relation of expressions of the form 𝐾𝑙 [𝑒′𝑙 ]
and 𝐾𝑟 [𝑒′𝑟 ], provided the subexpressions 𝑒′

𝑙
and 𝑒′𝑟 are related. A common restriction on the con-

texts 𝐾𝑙 and 𝐾𝑟 under which 𝑒
′
𝑙
and 𝑒′𝑟 appear is that they contain no handlers for the effects

performed by these expressions. To incorporate this restriction, the context-closure operation is

parameterised by a pair of lists of labels ls𝑙 and ls𝑟 and includes the condition that 𝐾𝑙 and 𝐾𝑟 be

respectively neutral for ls𝑙 and ls𝑟 . A context 𝐾 is neutral for a list of labels ls, noted neutral(ls, 𝐾),
when 𝐾 contains no handlers for labels in ls: ℒ(𝐾) ∩ ls = ∅.

In the example of Timerrefl , the context-closure Timer′refl ≜ ( [$Timer], [$Timer]) ⇃↾ Timerrefl
enables the relation of expressions under contexts 𝐾𝑙 and 𝐾𝑟 respectively neutral for $Timer:
Timer′refl (𝑒𝑙 , 𝑒𝑟 , 𝜆𝑒

′
𝑙
𝑒′𝑟 . 𝑄 (𝐾𝑙 [𝑒′𝑙 ], 𝐾𝑟 [𝑒

′
𝑟 ])) ⊢ Timer′refl (𝐾𝑙 [𝑒𝑙 ], 𝐾𝑟 [𝑒𝑟 ], 𝑄).

4.1.3 Model. With the definition of iThy, it is now possible to formalise the notion of validation of

a theory by a pair of contexts and consequently to formalise the notion of a refinement relation

parameterised by a theory.

Figure 2 shows the definition of the refinement relation 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}. The definition is

recursive and relies on the validation of a theory by a pair of contexts {𝑅}𝐾𝑙 ≾ 𝐾𝑟 ⟨T ⟩ {𝑆}. The
definition also relies on the notions of observational refinement O(𝑒𝑙 , 𝑒𝑟 , 𝑆) and of admissibility of
a refinement by a theory T ◀ 𝑒𝑙 ≾ 𝑒𝑟 {𝑅}. The notion of admissibility is transparent to the user,

whereas the notions of observational refinement and theory validation are opaque and used only

in the model.

Observational refinement is defined exactly like in ReLoC [Frumin et al. 2021, §7.1]. The in-

tuitive reading of O(𝑒𝑙 , 𝑒𝑟 , 𝑆) is that either 𝑒𝑙 diverges or both 𝑒𝑙 and 𝑒𝑟 respectively terminate

with values 𝑣𝑙 and 𝑣𝑟 such that 𝑆 (𝑣𝑙 , 𝑣𝑟 ) holds. The formal definition makes use of Iris’s weakest

precondition wp 𝑒𝑙 {. . .}, which expresses precisely the condition that 𝑒𝑙 either diverges or termi-

nates with a value. To express conditions on 𝑒𝑟 , the definition makes use of the ghost thread-pool
assertion 𝑖 Z⇒ 𝐾 [𝑒𝑟 ] to state that thread 𝑖 on the specification side is about to execute 𝑒𝑟 . The use

of 𝑖 Z⇒ 𝐾 [𝑣𝑟 ] as a postcondition means that thread 𝑖 finished executing 𝑒𝑟 and that 𝑒𝑟 returned

output 𝑣𝑟 .
5
The thread identifier 𝑖 is universally quantified, because it is not particularly relevant

5
The assertion specCtx is used to momentarily give ownership of the specification side’s resources. It is defined like

in [Frumin et al. 2021]. Its definition is included in the Appendix (Figure 14).
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value

𝑅(𝑣𝑙 , 𝑣𝑟 )
𝑣𝑙 ≾ 𝑣𝑟 ⟨T ⟩ {𝑅}

introduction

T ◀ 𝑒𝑙 ≾ 𝑒𝑟 {𝑅}
𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}

bind

traversable(𝐾𝑙 , 𝐾𝑟 , T) T ⊑ F
𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑣𝑙 𝑣𝑟 . 𝐾𝑙 [𝑣𝑙 ] ≾ 𝐾𝑟 [𝑣𝑟 ] ⟨F ⟩ {𝑅}}

𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] ⟨F ⟩ {𝑅}

exhaustion

𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}

∧
{
∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝐾𝑙 [𝑣𝑙 ] ≾ 𝐾𝑟 [𝑣𝑟 ] ⟨F ⟩ {𝑆}
∀𝑒′
𝑙
, 𝑒′𝑟 . T ◀ 𝑒′𝑙 ≾ 𝑒

′
𝑟 {𝑅} −−∗ 𝐾𝑙 [𝑒′𝑙 ] ≾ 𝐾𝑟 [𝑒

′
𝑟 ] ⟨F ⟩ {𝑆}

𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] ⟨F ⟩ {𝑆}

monotonicity

𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} T ⊑ F
�∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑆 (𝑣𝑙 , 𝑣𝑟 )

𝑒𝑙 ≾ 𝑒𝑟 ⟨F ⟩ {𝑆}

step-l

𝑒𝑙 →p 𝑒
′
𝑙

⊲𝐾 [𝑒′
𝑙
] ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}

𝐾 [𝑒𝑙 ] ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}

step-r

𝑒𝑟 →p 𝑒
′
𝑟 𝑒𝑙 ≾ 𝐾 [𝑒′𝑟 ] ⟨T ⟩ {𝑅}
𝑒𝑙 ≾ 𝐾 [𝑒𝑟 ] ⟨T ⟩ {𝑅}

Fig. 3. Reasoning rules of the base logic.

which specific thread is related to 𝑒𝑙 as long as it executes 𝑒𝑟 . The context 𝐾 under which 𝑒𝑟 runs is

universally quantified to endow observational refinement with context-local reasoning.
6

Given the intuitive reading of observational refinement O(𝑒𝑙 , 𝑒𝑟 , 𝑆) and assuming that the notion

of validation of a theory T by a pair of contexts 𝐾𝑙 and 𝐾𝑟 is captured by {𝑅}𝐾𝑙 ≾ 𝐾𝑟 ⟨T ⟩ {𝑆}, the
definition of the refinement relation 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} reads as: for every pair of contexts 𝐾𝑙 and 𝐾𝑟 ,

and for all postconditions 𝑆 , if 𝐾𝑙 and 𝐾𝑟 validate T , then, either 𝐾𝑙 [𝑒𝑙 ] diverges or both 𝐾𝑙 [𝑒𝑙 ]
and 𝐾𝑟 [𝑒𝑟 ] terminate with values by 𝑆 . The universal quantification over contexts is inspired by

Pitts and Stark [1999] biorthogonality technique, used for the first time by Biernacki et al. [2018] to

define logical relations for a language with effect handlers.

The definition of {𝑅}𝐾𝑙 ≾ 𝐾𝑟 ⟨T ⟩ {𝑆} consists of the conjunction of two clauses: (1) a clause

relating 𝐾𝑙 and 𝐾𝑟 when filled with values related by 𝑅 and (2) a clause relating 𝐾𝑙 and 𝐾𝑟 when

filled with expressions 𝑒𝑙 and 𝑒𝑟 for which the admissibility condition T ◀ 𝑒𝑙 ≾ 𝑒𝑟 {𝑅} holds.
This condition asserts that the refinement between 𝑒𝑙 and 𝑒𝑟 with postcondition 𝑅 is admissible

under T . Because 𝑅 is a relation on values while return conditions in T are relations on expressions,

admissibility existentially quantifies over a return condition 𝑄 such that T (𝑒𝑙 , 𝑒𝑟 , 𝑄) holds. To
connect 𝑄 with 𝑅, the definition also claims that the refinement 𝑒′

𝑙
≾ 𝑒′𝑟 ⟨T ⟩ {𝑅} holds for every

pair of expressions 𝑒′
𝑙
and 𝑒′𝑟 related by 𝑄 . This occurrence of the refinement relation makes its

definition recursive. This explains the use of the later modality ⊲, which is one of Iris’s mechanisms

to introduce recursive definitions: as long as the recursive occurrences are guarded by the later

modality, the definition can be constructed in Iris. The use of the persistently modality is again

related to the compliance with multi-shot continuations.
7

4.1.4 Reasoning rules. The refinement relation enjoys a collection of powerful and high-level

reasoning rules shown in Figure 3. Rules value, step-l, and step-r are standard: Rules step-l

and step-r provide the ability to partially execute code using pure reductions and Rule value

allows the user to end a refinement proof when both sides terminate with values that satisfy the

postcondition. The remaining rules are novel.

6
There is no need to enclose 𝑒𝑙 under a universally quantified context, because wp already enjoys context-local reasoning.

7
In §4.3, we show how to extend the logic with support for one-shot continuations with no changes to the model.
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Rule introduction states the admissibility of a refinement between 𝑒𝑙 and 𝑒𝑟 with postcondi-

tion 𝑅 under the theory T implies 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}. This rule is usually applied to reason about

effectful operations independently of their handlers.

Rule exhaustion incorporates a case-analysis principle into the logic whereby, if 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}
holds, then the derivation of 𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] ⟨F ⟩ {𝑆} splits into two subgoals: one where 𝑒𝑙
and 𝑒𝑟 are replaced with values related by 𝑅 and another one where 𝑒𝑙 and 𝑒𝑟 are replaced with

expressions 𝑒′
𝑙
and 𝑒′𝑟 such that T ◀ 𝑒′𝑙 ≾ 𝑒

′
𝑟 {𝑅} holds. This rule allows one to reason about handlers

independently of their handlees. It is typically applied when the contexts𝐾𝑙 and𝐾𝑟 contain handlers

monitoring the handlees 𝑒𝑙 and 𝑒𝑟 . However, it is important to note that the rule is applicable to

any contexts 𝐾𝑙 and 𝐾𝑟 . This flexibility allows the relation of programs where handlers on both

sides of the relation do not necessarily match. In §4.1.5, we return to the example of countdown (§2)

to show this principle in action.

Rule monotonicity enables one to weaken the postcondition 𝑅 and the parameterised the-

ory T of a refinement 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}. Such a reasoning principle is useful, for example, when

the refinement 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} is assumed, but T and 𝑅 do not exactly match F and 𝑆 . The

weakening of 𝑅 to 𝑆 is captured by the condition �∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑆 (𝑣𝑙 , 𝑣𝑟 ), where the persis-
tently modality ensures this ordering does not rely on ephemeral resources and can thus be used

multiple times in case the program is reified as a multi-shot continuation and resumed multiple

times. The weakening of T to F is captured by the theory ordering T ⊑ F , which is similarly

defined: �∀𝑒𝑙 , 𝑒𝑟 , 𝑄. T (𝑒𝑙 , 𝑒𝑟 , 𝑄) −−∗ F (𝑒𝑙 , 𝑒𝑟 , 𝑄).
Finally, Rule bind enables context-local reasoning about 𝑒𝑙 and 𝑒𝑟 independently of their enclosing

evaluation contexts 𝐾𝑙 and 𝐾𝑟 . The only side-condition is that there must be a theory T contained
in F (that is, T ⊑ F ) that traverses the pair of contexts 𝐾𝑙 and 𝐾𝑟 . Informally, this says that

whenever 𝑒𝑙 and 𝑒𝑟 are related by the theory T , so are 𝐾𝑙 [𝑒𝑙 ] and 𝐾𝑟 [𝑒𝑟 ]. The formal definition is:

traversable(𝐾𝑙 , 𝐾𝑟 , T) ≜ �∀𝑒𝑙 , 𝑒𝑟 , 𝑄. T (𝑒𝑙 , 𝑒𝑟 , 𝑄) −−∗
∃𝑃 . T (𝐾𝑙 [𝑒𝑙 ], 𝐾𝑟 [𝑒𝑟 ], 𝑃) ∗ �∀𝑒′

𝑙
, 𝑒′𝑟 . 𝑃 (𝐾𝑙 [𝑒′𝑙 ], 𝐾𝑟 [𝑒

′
𝑟 ]) −−∗ 𝑄 (𝑒′𝑙 , 𝑒

′
𝑟 )

This definition is transparent to the user. In other words, when applying Rule bind, the user

must find a theory T and prove this traversable condition. Fortunately, the predicate traversable
works nicely in combination with the context-closure of a theory:

∀T , ls𝑙 , ls𝑟 , 𝐾𝑙 , 𝐾𝑟 . neutral(ls𝑙 , 𝐾𝑙 ) −−∗ neutral(ls𝑟 , 𝐾𝑟 ) −−∗ traversable(𝐾𝑙 , 𝐾𝑟 , (ls𝑙 , ls𝑟 ) ⇃↾T) (10)

Using this theorem, it is possible to derive the following version of the bind rule, where the

traversable condition is replaced with more explicit conditions on the contexts 𝐾𝑙 and 𝐾𝑟 :

derived-bind

neutral(ls𝑙 , 𝐾𝑙 ) neutral(ls𝑟 , 𝐾𝑟 ) (ls𝑙 , ls𝑟 ) ⇃↾T ⊑ F
𝑒𝑙 ≾ 𝑒𝑟 ⟨(ls𝑙 , ls𝑟 ) ⇃↾T⟩ {𝑣𝑙 𝑣𝑟 . 𝐾𝑙 [𝑣𝑙 ] ≾ 𝐾𝑟 [𝑣𝑟 ] ⟨F ⟩ {𝑅}}

⊢ 𝐾𝑙 [𝑒𝑙 ] ≾ 𝐾𝑟 [𝑒𝑟 ] ⟨F ⟩ {𝑅}

4.1.5 Example. We briefly discuss how these rules can be used to derive Refinements 6 and 7 from

§2.2. First, let us formally define the theory Timerℓspec :

Timerℓspec ≜ ( [$Timer], []) ⇃↾ (Get ⊕ Set)
Get (perform $Timer (inl ()), !ℓ, 𝑄) ≜ ℓ 1/2↦→s 𝑥 ∗ �(ℓ 1/2↦→s 𝑥 −−∗ 𝑄 (𝑥, 𝑥))
Set (perform $Timer (inr𝑦), ℓ ← 𝑦, 𝑄) ≜ ℓ 1/2↦→s _ ∗ �(ℓ 1/2↦→s 𝑦 −−∗ 𝑄 ((), ()))

The definition uses the sum operator ⊕, which combines relations from two theories:

(T ⊕ F )(𝑒𝑙 , 𝑒𝑟 , 𝑄) ≜ T (𝑒𝑙 , 𝑒𝑟 , 𝑄) ∨ F (𝑒𝑙 , 𝑒𝑟 , 𝑄)
The theory Get allows the handlee to establish a refinement between perform $Timer (inl ())

and !ℓ in exchange for the fractional ownership ℓ
1/2↦→s 𝑥 . This assertion appears as a premise to the

return condition, which holds of the pair (𝑥, 𝑥). From the perspective of the handlee, this means that
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the fractional ownership ℓ
1/2↦→s 𝑥 can be reclaimed and that the expressions perform $Timer (inl ())

and !ℓ both return 𝑥 . The reading of Set is analogous.
Because Timerℓspec is defined using the context-closure operator, the theory can be used in

conjunction with derived-bind (where F is instantiated with Timerℓspec) to carry out Refinement 6.

The key rule to establish Refinement 7 is Rule exhaustion. It is applied using𝐾𝑙 instantiated with

run_st_passing’s handler and 𝐾𝑟 instantiated with []. Furthermore, the theory T in the statement

of Rule exhaustion is taken to be Timerℓspec and F is instantiated with ⊥. During the proof of

the clause ∀𝑒′
𝑙
, 𝑒′𝑟 . Timerℓspec ◀ 𝑒

′
𝑙
≾ 𝑒′𝑟 {=} −−∗ 𝐾𝑙 [𝑒′𝑙 ] ≾ 𝑒

′
𝑟 {=}, the admissibility condition gives

the fractional ownership ℓ
1/2↦→s 𝑥 to the handler. In combination with the other assertion ℓ

1/2↦→s 𝑥

initially given to the handler as a premise in 7, full ownership of ℓ is claimed by the handler, which

can then update ℓ in case of a set request. The return condition can be interpreted in this proof as

the condition under which the handler can resume the continuation: in the case of a get request,
for example, both the value 𝑥 and the fractional ownership ℓ

1/2↦→s 𝑥 must be supplied.

4.2 blaze: A logic for effect handlers with dynamic labels
So far, we have exclusively considered examples where the effect labels have already been allo-

cated. This observation incites the question: how to reason about programs like run_ask (§3.1)

where effect labels are allocated locally to avoid collision of effect names? For instance, given two

clients of the ask effect main1 and main2 and an integer 𝑥 , is it possible to establish a refinement

between run_ask 𝑥 main1 and main2 (fun _. 𝑥) when main1 and main2 perform arbitrary effects?

The verification of programs with local allocation of effects, such as run_ask, depends heavily on

assumptions about fresh labels being distinct from previously allocated ones. The baze logic places
the burden of keeping track of these assumptions entirely on the user. So, while baze can be used

to reason about run_ask, it is not placed at the right level of abstraction. To address this limitation,

we introduce blaze, a logic built on top of baze to facilitate reasoning about dynamic labels. In

blaze, it is possible to establish (in a relatively straightforward way) a strong result about run_ask
where assumptions about labels being distinct are hidden:

∀main1,
main2,
𝑥, L, 𝑅.

©­«
∀ ask1, ask2, M .

� ask1() ≾★ ask2() ⟨M⟩ {𝑣𝑙 𝑣𝑟 . 𝑣𝑙 = 𝑣𝑟 = 𝑥} −−∗
main1 ask1 ≾★ main2 ask2 ⟨L ++M⟩ {𝑅}

ª®¬ −−∗ run_ask 𝑥 main1 ≾★
main2 (fun _. 𝑥) ⟨L⟩ {𝑅}

(11)

The novelty of the refinement relation 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} is the parameterised list of theories L.
The elements of L are triples of the form (ls𝑙 , ls𝑟 , T), where ls𝑙 and ls𝑟 are lists of effect labels
respectively allocated by the implementation and the specification sides, and T is a theory relating

expressions that use these effects. Roughly speaking, the list M in Refinement 11 is used to

relate fun _. perform Ask () to fun _. 𝑥 . Its universal quantification reflects the fact that Ask is

allocated locally by run_ask. The list L represents an ambient set of relational theories used to

relate main1 to main2. The lists of theories L and M are disjoint, because the labels in L are

allocated before Ask. This assumption however exists only as part of the model of the logic. Because

the model is opaque, this requirement is never directly exposed to the user.

4.2.1 Model. The formal definition of 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} appears in Figure 4. It unfolds to a refine-

ment in baze with parameterised theory interp(L) and premise valid (L).
The theory interp(L) is constructed as the iterated sum of theories (ls𝑙 , ls𝑟 ) ⇃↾ T for every

triple (ls𝑙 , ls𝑟 , T) in L. In essence, this construction sacrifices the expressivity of general theories

in baze’s refinement relation to endow the blaze layer with context-local reasoning by default.

The premise valid (L) is defined using the terms labelsi (L) and labelss (L), which collect the

labels in L that belong to the implementation side and to the specification side, respectively. The

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:16 Paulo Emílio de Vilhena, Simcha Van Collem, Ines Wright, and Robbert Krebbers

𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} ≜ valid (L) −−∗ 𝑒𝑙 ≾ 𝑒𝑟 ⟨interp(L)⟩ {𝑅}

interp( []) ≜ ⊥
interp((ls𝑙 , ls𝑟 , T) :: L) ≜
(ls𝑙 , ls𝑟 ) ⇃↾T ⊕ interp(L)

valid (L) ≜

∗
{
distinct (labelsi (L)) ∗ ∀$E ∈ labelsi (L). label�i ($E)
distinct (labelss (L)) ∗ ∀$E ∈ labelss (L). label�s ($E)

labelsi ( []) ≜ [] labelss ( []) ≜ []
labelsi ((ls𝑙 , _, _) :: L) ≜ ls𝑙 ++ labelsi (L) labelss ((_, ls𝑟 , _) :: L) ≜ ls𝑟 ++ labelss (L)

Fig. 4. Model of blaze.

assertions label�i ($E1) and label�s ($E2) claim ownership of persistent resources obtained after

the allocation of the effects $E1 and $E2.
8
Therefore, the premise valid (L) asserts that the labels

in labelsi (L) and in labelss (L) have already been allocated and are pairwise distinct. In essence,

this premise represents the assumption that the theories in L do not interfere with one another or

new theories for newly allocated effects.

4.2.2 Reasoning rules. The reasoning rules of blaze appear in Figure 5.

Rule effect-l-★ can be used in conjunction with Rule add-label-l-★ to add a freshly allocated

label to one of the triples in L. The assertion labeli ($E) works as an exchangeable token that is

forged by Rule effect-l-★ and consumed by Rule add-label-l-★. Rules effect-r-★ and add-label-

r-★ enable analogous reasoning for the specification side. The order of the triples in L and the

order of the labels in a triple are not important. New triples can be added with Rule new-theory-★.

The statement of Rule introduction-★ is similar to Rule introduction. The theory T can be

chosen among any of the list L. Admissibility must be shown with respect to the triple (ls𝑙 , ls𝑟 , T):
(ls𝑙 , ls𝑟 , T) ◀ 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} ≜

∃𝑒′
𝑙
, 𝑒′𝑟 , 𝐾𝑙 , 𝐾𝑟 , 𝑄.

𝑒𝑙 = 𝐾𝑙 [𝑒′𝑙 ] ∗ 𝑒𝑟 = 𝐾𝑟 [𝑒
′
𝑟 ] ∗ neutral(ls𝑙 , 𝐾𝑙 ) ∗ neutral(ls𝑟 , 𝐾𝑟 ) ∗

T (𝑒′
𝑙
, 𝑒′𝑟 , 𝑄) ∗ � ⊲∀𝑒′′

𝑙
, 𝑒′′𝑟 . 𝑄 (𝑒′′𝑙 , 𝑒

′′
𝑟 ) −−∗ 𝐾𝑙 [𝑒′′𝑙 ] ≾★ 𝐾𝑟 [𝑒

′′
𝑟 ] ⟨L⟩ {𝑅}

The ability to relate expressions under arbitrary contexts 𝐾𝑙 and 𝐾𝑟 in this definition closes

the theory T under neutral contexts (for ls𝑙 and ls𝑟 ). This design choice makes it possible to

state Rule bind-★ in a similar fashion to Rule derived-bind with explicit side conditions on 𝐾𝑙
and 𝐾𝑟 . Namely, the condition ℒ(𝐾𝑙 ) ⊆ labelsi (M) restricts the handlers in 𝐾𝑙 to the effect labels

in labelsi (M). The conditionℒ(𝐾𝑟 ) ⊆ labelss (M) is analogous. The condition L ++M ⊑★ N is

defined as the multiplicity-preserving inclusion of L ++M in N . It guarantees the labels in L are

disjoint from the labels inM. In combination, these conditions restrict the handlers in 𝐾𝑙 and 𝐾𝑟 to

not capture effects with labels from L.
Finally, Rule exhaustion-★ incorporates the exhaustion principle into blaze. The expressions 𝑒𝑙

and 𝑒𝑟 are related under a list of theoriesM, but the user needs to choose only one of the theories T
inM with which to perform the case-analysis reasoning; that is, the premise requiring a relation

between 𝐾𝑙 [𝑒′𝑙 ] and 𝐾𝑟 [𝑒
′
𝑟 ] assumes the admissibility with respect only to the theory T . Intuitively,

this is possible because of the conditions ℒ(𝐾𝑙 ) ⊆ ls𝑙 and ℒ(𝐾𝑟 ) ⊆ ls𝑟 , which guarantee that the

remaining theories inM are irrelevant in the context of 𝐾𝑙 and 𝐾𝑟 . The persistently modality is

8
The assertion label�i ($E1 ) is defined in terms of a more general assertion labeli ($E1, dq) , where dq is a discardable
fraction [Vindum and Birkedal 2021]. Taking dq as the full fraction 1 gives the assertion labeli ($E1 ) whereas taking dq
as the discarded fraction gives the persistent assertion label�i ($E1 ) . The assertion label�s ($E2 ) is analogously defined in

terms of an assertion labels ($E2, dq) . These definitions are included in the Appendix (Figure 15).
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effect-l-★
⊲∀$E. labeli ($E) −−∗ 𝐾 [𝑒{$E/E}] ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}

𝐾 [let effect E in 𝑒] ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}

effect-r-★
∀$E. labels ($E) −−∗ 𝑒𝑙 ≾★ 𝐾 [𝑒{$E/E}] ⟨L⟩ {𝑅}

𝑒𝑙 ≾★ 𝐾 [let effect E in 𝑒] ⟨L⟩ {𝑅}

add-label-l-★
labeli ($E) 𝑒𝑙 ≾★ 𝑒𝑟 ⟨($E :: ls𝑙 , ls𝑟 , T) :: L⟩ {𝑅}

𝑒𝑙 ≾★ 𝑒𝑟 ⟨(ls𝑙 , ls𝑟 , T) :: L⟩ {𝑅}

add-label-r-★
labels ($E) 𝑒𝑙 ≾★ 𝑒𝑟 ⟨(ls𝑙 , $E :: ls𝑙 , T) :: L⟩ {𝑅}

𝑒𝑙 ≾★ 𝑒𝑟 ⟨(ls𝑙 , ls𝑟 , T) :: L⟩ {𝑅}

new-theory-★
𝑒𝑙 ≾★ 𝑒𝑟 ⟨([], [], ⊥) :: L⟩ {𝑅}

𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}

introduction-★
(ls𝑙 , ls𝑟 , T) ∈ L (ls𝑙 , ls𝑟 , T) ◀ 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}

𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}

exhaustion-★
ℒ(𝐾𝑙 ) ⊆ ls𝑙 ℒ(𝐾𝑟 ) ⊆ ls𝑟

𝑒𝑙 ≾★ 𝑒𝑟 ⟨M⟩ {𝑅} M = (ls𝑙 , ls𝑟 , T) :: L N = (ls𝑙 , ls𝑟 , F ) :: L

∧
{
�∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝐾𝑙 [𝑣𝑙 ] ≾★ 𝐾𝑟 [𝑣𝑟 ] ⟨N⟩ {𝑆}
�∀𝑒′

𝑙
, 𝑒′𝑟 . (ls𝑙 , ls𝑟 , T) ◀ 𝑒′𝑙 ≾★ 𝑒

′
𝑟 ⟨M⟩ {𝑅} −−∗ 𝐾𝑙 [𝑒′𝑙 ] ≾★ 𝐾𝑟 [𝑒

′
𝑟 ] ⟨N⟩ {𝑆}

𝐾𝑙 [𝑒𝑙 ] ≾★ 𝐾𝑟 [𝑒𝑟 ] ⟨N⟩ {𝑆}

bind-★
ℒ(𝐾𝑙 ) ⊆ labelsi (M) ℒ(𝐾𝑟 ) ⊆ labelss (M) L ++M ⊑★ N

𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑣𝑙 𝑣𝑟 . 𝐾𝑙 [𝑣𝑙 ] ≾★ 𝐾𝑟 [𝑣𝑟 ] ⟨N⟩ {𝑅}}
𝐾𝑙 [𝑒𝑙 ] ≾★ 𝐾𝑟 [𝑒𝑟 ] ⟨N⟩ {𝑅}

Fig. 5. Reasoning rules of blaze.

needed because these remaining theories can still relate effects that cause 𝐾𝑙 or 𝐾𝑟 to be captured

in a multi-shot continuation.

4.2.3 Example. We now show how these reasoning rules can be applied to derive Refinement 11

(§4.2). The proof starts with the application of Rules new-theory-★, effect-l-★, and add-label-l-★,

in this order. This sequence of rules has the effect of adding the fresh label $Ask to a new entry in the

ambient list of theoriesL. Initially this new entry has the form ( [$Ask], [], ⊥). The core of the proof
is the application of Rule exhaustion-★, where 𝑒𝑙 is instantiated with main1 (perform $Ask ()),
the expression 𝑒𝑟 with main2 (fun _. 𝑥), and the theory T with AskT (perform $Ask (), 𝑥, 𝑄) ≜
�𝑄 (𝑥, 𝑥). The refinement between main1 and main2 directly follows from the premise of Re-

finement 11 with the abstract theory listM instantiated with [( [$Ask], [], AskT )]. The other

conditions of Rule exhaustion-★ are straightforward.

4.3 Support for one-shot continuations
The introduction of one-shot continuations is motivated by the fact that, in languages like OCaml,

the violation of a one-shot discipline causes a runtime error. We thus follow [de Vilhena and Pottier

2021; van Rooij and Krebbers 2025] to introduce one-shot continuations in a way that enables

the logic to rule out such runtime errors. The idea is to represent one-shot continuations with a

construct cont ℓ 𝐾9
that, in addition to the reified context 𝐾 , carries a location ℓ which triggers a

9
In our Rocq formalisation [de Vilhena et al. 2026], we have an extended syntax 𝑘 (as multi)? for the continuation binder

in the effect branch of a handler. The keywords as multi are optional. Their presence indicates a multi-shot semantics.
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runtime error if the contination is resumed twice. By the soundness theorem of the logic (§4.4), a

verified program either diverges or terminates, so it cannot resume a one-shot continuation twice

as runtime errors are guaranteed to be absent.

Another motivation is that, as we have seen, from a logical perspective, allowing continuations to

be resumed multiple times results in the addition of persistently modalities in some of the reasoning

rules, most notably, in Rule monotonicity. To provide the logic with a strong monotonicity

reasoning principle applicable to fragments of code that abide by a one-shot discipline, we take

inspiration from van Rooij and Krebbers [2025], by introducing the one-shot operator ⃝T , a semantic

version of the flip-bang operator:
10

(⃝T )(𝑒𝑙 , 𝑒𝑟 , 𝑄) ≜ ∃𝑃 . T (𝑒𝑙 , 𝑒𝑟 , 𝑃) ∗ ⊲∀𝑒′
𝑙
, 𝑒′𝑟 . 𝑃 (𝑒′𝑙 , 𝑒

′
𝑟 ) −−∗ 𝑄 (𝑒′𝑙 , 𝑒

′
𝑟 )

The key property of this definition is that it closes a theory T under a monotonicity principle on

return conditions: if (⃝T )(𝑒𝑙 , 𝑒𝑟 , 𝑄) and ∀𝑣𝑙 , 𝑣𝑟 . 𝑄 (𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑃 (𝑣𝑙 , 𝑣𝑟 ) hold, then (⃝T )(𝑒𝑙 , 𝑒𝑟 , 𝑃)
holds. Using the notations ⃝msT ≜ T , ⃝osT ≜ ⃝T ,�ms𝐴 ≜ �𝐴, and�os𝐴 ≜ 𝐴, it is then possible
to incorporate a generalised monotonicity principle into the logic:

gen-monotonicity

(�𝑚∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑆 (𝑣𝑙 , 𝑣𝑟 ))
𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} T ⊑ F ⊢ 𝑒𝑙 ≾ 𝑒𝑟 ⟨⃝𝑚F ⟩ {𝑆}

Taking 𝑚 = ms yields Rule monotonicity, while taking 𝑚 = os eliminates the persistently

modality, thereby allowing ephemeral resources to be used in the proof that 𝑅 implies 𝑆 .

The blaze logic admits a similar generalised monotonicity rule and a generalised exhaustion rule

that makes use of the one-shot operator to eliminate the persistently modalities in exhaustion-★.

Both rules are included in the Appendix (Figure 11).

4.4 Soundness
Soundness of baze is shown by a standard adequacy statement [Frumin et al. 2021, Thm. 7.1] that

relates the notion of refinement to the underlying operational semantics of 𝜆-blaze:11

Theorem 4.1. If ⊢ 𝑒𝑙 ≾ 𝑒𝑟 ⟨⊥⟩ {True}, then either 𝑒𝑙 diverges or both 𝑒𝑙 and 𝑒𝑟 terminate.

Soundness of blaze follows as a corollary by 𝑒𝑙 ≾★ 𝑒𝑟 ⟨[]⟩ {True} ⊢ 𝑒𝑙 ≾ 𝑒𝑟 ⟨⊥⟩ {True}.
Another common corollary of adequacy is contextual refinement [Frumin et al. 2021, Lem. 7.2].

We cannot write the statement of contextual refinement, because it depends on types but 𝜆-blaze is
untyped. Extending 𝜆-blaze with types is one of our directions for future work (§7).

5 Case Studies
To assess the usability of the logic, we verify refinement statements for a number of interesting

effects including concurrency (§5.1), Haskell-like non-determinism (§5.2), and state, where, like Bier-
nacki et al. [2018, §4.2], we show state can be implemented in terms of two independent reader and
writer effects. In the interest of space, we do not discuss this state effect in detail. Its implementation

can be found in the Appendix (§C.1). Mechanised proofs of all case studies are included in our Rocq

formalisation [de Vilhena et al. 2026].

Their absence indicates the handler captures the handlee in a one-shot continuation. The construct cont ℓ 𝐾 is introduced

at runtime by such handlers.

10
This definition can also be seen as a generalisation of the upward closure [de Vilhena 2022, §2.2.2] to a binary setting.

11
Theorem 4.1 states a slightly weaker result than the adequacy theorem proven in the Rocq development [de Vilhena et al.

2026] This weaker version, which is sufficient to show soundness, uses a fixed postcondition True, whereas the formalised

one, which can be found in the Appendix (Theorem B.3), uses an arbitrary pure postcondition.
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runForkSpec ≜ �∀main1, main2.©­«
∀fork

1
, fork

2
, L .

forkSpec(fork
1
, fork

2
, L) −−∗

main1 fork1 ≾★ main2 fork2 ⟨L⟩ {True}
ª®¬ −−∗ run_fork main1 ≾★

main2 (fun task′ . fork (task′())) {True}

forkSpec(fork
1
, fork

2
, L) ≜ �∀task1, task2.

task1() ≾★ task2() ⟨L⟩ {True} −−∗ fork1 task1 ≾★ fork
2
task2 ⟨L⟩ {True}

Fig. 6. Fork case study: Specification.

5.1 Concurrency
Effect handlers enable the implementation of cooperative-concurrency libraries. In such libraries,

multiple tasks can be spawned and their execution is monitored by a scheduler making sure at most

one task runs at a time. It is an important and interesting application of effect handlers, serving

as the “primary motivation” for the addition of effect handlers to OCaml [Leroy et al. 2025, §24.5].

Here is the handler-based implementation of a fork effect [Biernacki et al. 2020, Fig. 11] in 𝜆-blaze:

run_fork ≜ funmain.
let effect Fork in let𝑞 = new_queue() in
let run = rec run task. handle task() with
| effect Fork task′, 𝑘 ⇒ push𝑞 𝑘;run task′
| _⇒ if empty𝑞 then () else (let𝑘 = pop𝑞 in𝑘())

in run (fun _. main (fun task′ . perform Fork task′))

The function run_fork supplies a piece of client codemain with the functionality to fork tasks by

monitoring the execution of main with a handler for the Fork effect. The handling of a Fork effect

with payload task′ pushes the paused continuation 𝑘 to a queue 𝑞. This queue is allocated at the

beginning of run_fork’s execution. It is initially empty, and, as an invariant, it stores continuations

that can be readily resumed with (). Updates to 𝑞 maintain this invariant, because, thanks to a

deep-handler semantics, the continuation 𝑘 includes the Fork handler at its top-most frame. After

this update, the handling of Fork terminates by running task′ under a new Fork handler. When

a task terminates, if the handler finds 𝑞 non-empty, it pops a continuation 𝑘 from 𝑞 representing

a previously paused task and resumes the execution of this task. If 𝑞 is empty then all scheduled

tasks have executed, so the function run_fork terminates.

The implementation of run_fork is concise, but relies on advanced programming features, notably,

the ability to reify contexts as first-class continuations using handlers and the ability to place

these continuations in the store. The complexity of run_fork’s operational behaviour motivates

the question: is it possible to show that the fork functionality implemented by run_fork can be

abstracted as a real concurrent fork instruction?

In this case study, we answer this question positively by verifying in blaze that the functionality
implemented by run_fork refines the primitive fork construct of 𝜆-blaze. The formal statement is

written in Figure 6. The specification of run_fork, the assertion runForkSpec, states a refinement

between the application of run_fork to a client main1 and the application of a client main2 to
a function fun task′ . fork (task′()) that directly forks task′. The clients main1 and main2 are
universally quantified in this specification. It is assumed that main1 and main2 can be related when

respectively supplied with abstract fork implementations fork
1
and fork

2
. It is the obligation of

the user of the library to show the relation between main1 fork1 and main2 fork2. To establish this

relation, the user can rely on a relational specification of fork
1
and fork

2
, the assertion forkSpec,
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stating a relation between the application of fork
1
to a task task1 and the application of fork

2
to a

task task2. To use this specification, it is again an obligation of the user to establish the relation

between task1() and task2(). In establishing this relation, the user can still rely on forkSpec to
relate further calls to fork

1
and fork

2
in the tasks task1 and task2. The refinement between main1

and main2 is carried out under an abstract theory list L. Intuitively, this list represents the internal
relational theory that is used by run_fork to relate Fork to fork. Apart from L, which is abstract

to the user, the specification runForkSpec assumes an empty ambient theory to relate the effects

of main1 and main2 as well as the effects of two forked tasks task1 and task2. In other words, the

specification disallows main1 and main2 as well as forked tasks to perform unhandled effects. This

limitation is necessary because forked tasks on the specification side of the refinement run on new

empty contexts, where performing an unhandled effect constitutes a runtime error.

5.1.1 Relational reasoning about concurrency. Before presenting the proof of runForkSpec, we
explain how we extend blaze with support for reasoning about native concurrency.

12
The logic

has support for invariants in the same way as ReLoC [Frumin et al. 2021]: there are two general

rules for allocating and closing invariants and one invariant-opening rule per atomic instruction.

In the interest of space, we do not discuss these rules, because they are not needed in our case

studies.
13
Invariants are not needed, because, in all case studies, native concurrency occurs only on

the specification side of the refinement, whereby, thanks to an angelic flavour of non-determinism,

the user is (or should be) capable of deciding how threads interleave to avoid interference. Despite

the substantial literature on relational concurrent separation logic [Frumin et al. 2018, 2021; Vindum

and Birkedal 2021; Vindum et al. 2022], we found that rules to achieve such a desirable reasoning

ability are lacking with respect to three key limitations which we explain next. To address these

limitations, we design novel relational reasoning rules for concurrency.

Limitation to refinements where forks match. In previous work (for example [Frumin et al. 2021,

§4.1]), it is assumed that fork instructions on both sides of a refinement match. This is clearly not

the case for the refinement runForkSpec because only the specification side forks threads directly.

To overcome this limitation, we follow Vindum et al. [2022] in exposing the ghost thread-pool

assertion 𝑖 Z⇒ 𝑒14 in the logic. Recall that its reading simply states thread 𝑖 at the specification

side runs 𝑒 . Using this resource, we can split a traditional relational fork rule into Rules fork-l-★

and fork-r-★, shown in Figure 7. Rule fork-r-★ forges a new resource 𝑖 Z⇒𝑒𝑟 . There are many ways

to spend this resource. Rule fork-l-★ consumes it to allow reasoning about a fork 𝑒𝑙 instruction
on the implementation side. As a condition to this rule, the expressions 𝑒𝑙 and 𝑒𝑟 must be related

under the theory list L⊥, which sets every theory in L to ⊥. This condition guarantees the forked

threads do not perform unhandled effects.

Explicit operational reasoning about thread-pool assertions. The reasoning rules introduced by Vin-
dum et al. [2022, Fig. 8] require the user to explicitly manipulate thread-pool resources; that is,

the user must inspect the shape of the expression 𝑒𝑟 in an assertion 𝑖 Z⇒ 𝑒𝑟 and select one of

their rules allowing 𝑒𝑟 to be partially executed. This is a strong limitation for the verification

of runForkSpec, because the only assumption on forked tasks task1 and task2 is that task1() re-

fines task2(). The specific shape of task2 is unknown. To overcome this limitation, we introduce

Rule logical-fork-★ (Figure 7). This rule consumes a thread-pool resource 𝑖 Z⇒ 𝐾𝑟 [𝑒𝑟 ] and, as a
condition, the user must supply a subexpression 𝑒𝑙 that refines 𝑒𝑟 . In return, the user can reclaim the

12
We focus on blaze but similar reasoning principles can be achieved in baze (Figure 17).

13
The rules for allocating, opening, and closing invariants can be found in the Appendix (§C.3.1).

14
Vindum et al. [2022] in fact present this resource as a right refinement. In our logic, the user does not explicitly manipulate

this resource; it is already abstract as is, so we can keep its standard notation.
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fork-l-★
𝑖 Z⇒ 𝑒𝑟 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⊥⟩ {True} 𝐾𝑙 [()] ≾★ 𝑒′𝑟 ⟨L⟩ {𝑅}

𝐾𝑙 [fork 𝑒𝑙 ] ≾★ 𝑒′𝑟 ⟨L⟩ {𝑅}

fork-r-★
∀𝑖 . 𝑖 Z⇒ 𝑒𝑟 −−∗ 𝑒𝑙 ≾★ 𝐾𝑙 [()] ⟨L⟩ {𝑅}

𝑒𝑙 ≾★ 𝐾𝑙 [fork 𝑒𝑟 ] ⟨L⟩ {𝑅}

logical-fork-★
𝑖 Z⇒ 𝐾𝑟 [𝑒𝑟 ] 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⊥⟩ {𝑅} ∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑖 Z⇒ 𝐾𝑟 [𝑣𝑟 ] −−∗ 𝐾𝑙 [𝑣𝑙 ] ≾★ 𝑒′𝑟 ⟨L⟩ {𝑆}

𝐾𝑙 [𝑒𝑙 ] ≾★ 𝑒′𝑟 ⟨L⟩ {𝑆}

thread-swap-★
𝑖 Z⇒ 𝐾 [𝑒𝑟 ] ∀𝑗, 𝐾 ′ . 𝑗 Z⇒ 𝐾 ′ [𝑒′𝑟 ] −−∗ 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⊥⟩ {𝑣𝑙 _. ∃𝑣 ′𝑟 . 𝑗 Z⇒ 𝐾 ′ [𝑣 ′𝑟 ] ∗ 𝑅(𝑣𝑙 , 𝑣 ′𝑟 )}

𝑒𝑙 ≾★ 𝑒
′
𝑟 ⟨L⟩ {𝑅}

Fig. 7. Reasoning rules for concurrency.

assertion 𝑖 Z⇒ 𝐾𝑟 [𝑣𝑟 ] where 𝑒𝑟 is replaced with its result 𝑣𝑟 , obtained with no explicit manipulation

of the thread-pool assertion. This rule can be used in conjunction with Rule fork-r-★ to derive

the refinement 𝑒1 ≾ 𝑒
′
1
{True} −−∗ 𝑒2 ≾ 𝑒′2 {True} −−∗ 𝑒1; 𝑒2 ≾ fork (𝑒′

1
); 𝑒′

2
{True}, which cannot

be shown using the rules in [Vindum et al. 2022, Fig. 8] without breaking the abstraction of their

refinement relation.

Access to thread-pool resource describing the main thread. With the rules discussed so far, the only

way to obtain new thread-pool resources is by means of Rule fork-r-★. In other words, thread-pool

resources can only describe forked threads but not themain thread 𝑒𝑟 on the specification side of the
refinement. As we are going to see, the proof of runForkSpec needs access to the thread-pool resource
describing the main thread. Rule rel-split from Vindum et al. [2022, Fig. 8] supports this very

feature. However, the statement relies on the fact that ReLoC’s notion of refinement Δ ⊨ 𝑒𝑙 ≾ 𝑒𝑟 : 𝜏
is defined using 𝑖 Z⇒ 𝑒𝑟 as a premise. This makes the adaption of rel-split to blaze particularly
difficult, because blaze’s model hides thread-pool assertions under multiple layers of abstraction.

15

Instead, we introduce Rule thread-swap-★ (Figure 7), which allows the user to trade a thread-pool

resource 𝑖 Z⇒𝐾 [𝑒𝑟 ] in exchange for a thread-pool resource 𝑗 Z⇒𝐾 ′ [𝑒′𝑟 ] describing the main thread 𝑒′𝑟
under an abstract context 𝐾 ′. The expression 𝑒𝑟 becomes the new main thread on the specification

side and the postcondition is updated to require the termination of 𝑒′𝑟 , which is part of the implicit

requirements of the original refinement.

5.1.2 Verification. After the allocation of an effect label $Fork by run_fork, the crux of the proof is
(1) the introduction of a relational theory Fork to relate $Fork effects to fork and (2) the definition

of the queue invariant in blaze. These definitions appear in Figure 8.

The theory Fork requires task1 to refine task2 as naturally expected. To allow $Fork effects

in task1, the refinement between task1 and task2 assumes the theory Fork itself. The later modality ⊲

guards this recursive occurrence of Fork to facilitate the definition in Iris. The return condition

asserts that both the $Fork effect and fork return ().
Recall that, according to the informal explanation of run_fork, the queue stores continuations that

can be readily resumed. The definition of the queue invariant, the predicate queueInv, formalises

this description. The term 𝑞 represents the queue identifier. The term ks describes the contents
of 𝑞. Concretely, it is a list of triples (𝑘, ( 𝑗, 𝐾)), where 𝑘 is one of the continuations in 𝑞. This

connection is captured by isQueue(𝑞, ks.1), which asserts 𝑞 contains the collection of continuations

15
The same holds for baze.
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Relational theory.

Fork(perform $Fork task1, fork (task2()), 𝑄) ≜
⊲ task1() ≾★ task2() ⟨[([$Fork], [], Fork)]⟩ {True} ∗ 𝑄 ((), ())

Invariants and predicates.

queueInv(𝑞, ks, ks′) ≜ isQueue(𝑞, ks.1) ∗(∗(𝑘, ( 𝑗, 𝐾 ) ) ∈ks . ∃𝑒𝑟 . 𝑗 Z⇒ 𝐾 [𝑒𝑟 ] ∗ ready(𝑞, 𝑘(), 𝑒𝑟 )
)
∗
(∗(_, ( 𝑗, 𝐾 ) ) ∈ks′ . ∃𝑣𝑟 . 𝑗 Z⇒ 𝐾 [𝑣𝑟 ]

)
ready(𝑞, 𝑒𝑙 , 𝑒𝑟 ) ≜ ∀ks, ks′ . ⊲ queueInv(𝑞, ks, ks′) −−∗
𝑒𝑙 ≾★ 𝑒𝑟 ⟨[([$Fork], [], ⊥)]⟩ {queueInv(𝑞, [], ks ++ ks′)}

Fig. 8. Fork case study: Internal logical definitions.

in ks. Because the continuation 𝑘 is created by a running task that performs an effect, there must

be a corresponding task on the specification side that 𝑘 refines. The thread identifier 𝑗 and the

context 𝐾 are used to describe the state of this task: it is an expression 𝑒𝑟 such that 𝑗 Z⇒ 𝐾 [𝑒𝑟 ].
Finally, the term ks′ in queueInv represents the tasks on the specification side that have terminated

and that were once used in the description of continuations in ks.
During the handling of a $Fork effect with payload task′

1
, the specification side is a pro-

gram of the form 𝐾𝑟 [fork (task′
2
())]. After the application of Rule fork-r-★, the newly ob-

tained resource 𝑖 Z⇒ task′
2
() is immediately traded, via Rule thread-swap, for a thread-pool

resource 𝑗 Z⇒ 𝐾 ′ [𝐾𝑟 [()]] describing the main thread. This resource is used to show the queue

invariant is preserved after pushing 𝑘 . The proof then carries on with run task′
1
on the implementa-

tion side and the specification side correctly adjusted to task′
2
(). Upon termination of a task, if the

queue is non-empty, a continuation 𝑘 is taken from the queue. At this point, Rule logical-fork is

used in conjunction with the thread-pool resource and the ready assumption retrieved from the

queue invariant, thus concluding the proof.

5.1.3 Async/await. We prove a similar refinement statement for an asynchronous-computation
library offering async and await effects [de Vilhena and Pottier 2021; Dolan et al. 2017]. The

implementation run_coop
1
, which appears in Figure 9 is the translation to 𝜆-blaze of the OCaml

implementation from Dolan et al. [2017, Fig. 1].

In addition to a queue of ready continuations, run_coop
1
also stores continuations in promises.

Abstractly, a promise 𝑝 represents the result of a running task. The continuations in 𝑝 wait for this

result. The continuations can be readily resumed once the task finishes, so they are transferred to

the queue. We show that run_coop
1
refines run_coop

2
, which offers a more direct implementation

of async using fork instead of storing continuations in a queue. The implementation of await

by run_coop
2
still relies on a handler and also uses promises to manage waiting threads. To avoid

races, run_coop
2
uses locks to protect accesses to promises.

The proof that run_coop
1
refines run_coop

2
relies on a queue invariant similar to queueInv

(Figure 8). Other logical definitions used internally in the proof are adapted from de Vilhena and

Pottier [2021] (who carry out the verification of a similar asynchronous library in a unary setting

in Iris). The complete list of definitions is included in the Appendix (§C.2.1).

Finally, we also prove the negative result that run_coop
1
does not refine the following handler-free

implementation of async and await by run_coop
3
, where async is implemented using fork and
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run_coop
1
≜ funmain.

let effect Coop in
let𝑞 = new_queue() in
let next = fun _.
if empty𝑞 then () else (pop𝑞)()

in
let run = rec run 𝑝 task. handle task() with

| effect Coop request, 𝑘 ⇒
match request with
| inl task′ ⇒
let𝑝′ = ref (inr []) in
push𝑞 (fun _. 𝑘 𝑝′);run 𝑝′ task′

| inr𝑝′ ⇒ match !𝑝′ with
| inl𝑥 ⇒ 𝑘 𝑥
| inr ks⇒ 𝑝′ ← inr (𝑘 :: ks);next()

|𝑦 ⇒
let (inr ks) = !𝑝 in𝑝 ← inl𝑦;
iter (fun𝑘. push𝑞 (fun _. 𝑘 𝑦)) ks;
next()

in
let async = fun task′ . perform Coop (inl task′) in
let await = fun𝑝′ . perform Coop (inr 𝑝′) in
let𝑝 = ref (inr []) in
run 𝑝 (fun _. main async await)

run_coop
2
≜ funmain.

let effect Await in
let new_promise = fun _.

(ref (inr []), new_lock())
in
let run = rec run 𝑝 task.

handle task() with
| effect Await 𝑝′, 𝑘 ⇒

acquire𝑝′.2; match !𝑝′.1 with
| inl𝑥 ⇒ release 𝑝′.2;𝑘 𝑥
| inr ks⇒ 𝑝′.1← inr (𝑘 :: ks);
release𝑝′.2

|𝑦 ⇒ acquire𝑝.2;
let (inr ks) = !𝑝.1 in
𝑝.1← inl𝑦; release𝑝.2;
iter (fun𝑘. fork (𝑘 𝑦)) ks

in let async = fun task′ .
let𝑝′ = new_promise() in
fork (run 𝑝′ task′);𝑝′

in
let await = fun𝑝′ . perform Await 𝑝′ in
let𝑝 = new_promise() in
run 𝑝 (fun _. main async await)

Fig. 9. Async/await implementations.

await is implemented by busy waiting:

deadlock ≜ fun async await .
let 𝑟 = ref (inl ()) in
let 𝑝 = async (rec 𝑓 ().
match !𝑟 with
| inl ()⇒ async (fun _. ()); 𝑓 ()
| inr𝑝 ⇒ await 𝑝

) in
𝑟 ← inr𝑝;
await 𝑝

run_coop
3
≜ funmain.

let async = fun task.
let 𝑝 = ref (inl ()) in
fork (let𝑦 = task() in𝑝 ← (inr𝑦));𝑝

in
let await = rec await 𝑝.

match !𝑝 with inl ()⇒ await 𝑝 | inr 𝑣 ⇒ 𝑣

in
main async await

The key idea is to adapt the deadlock example from de Vilhena [2022, Fig. 4.2] to exhibit a

client that terminates when using the handler-based library but diverges otherwise.
16

In short,

the client deadlock creates a cyclic dependency between 𝑝 and itself. With the implementation of

async and await by run_coop
3
, when deadlock executes the final instruction await 𝑝 , it diverges,

because 𝑝 is never fulfiled. With the implementation of async and await by run_coop
1
, on the other

hand, when deadlock executes the final instruction await 𝑝 , it is captured in a continuation and

stored in 𝑝 . The internal queue managed by run_coop
1
becomes empty, so it terminates.

16
The precise statement is included in the Appendix (§C.2.2).
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run_nd_pure ≜ funmain.
handle main() with
| effect $ND request, 𝑘 ⇒

match request with
| inl (𝑡1, 𝑡2)⇒ 𝑘 𝑡1 ++𝑘 𝑡2
| inr ()⇒ []

|𝑦 ⇒ [𝑦]

run_nd_rand ≜ funmain. handle main() with
| effect $ND request, 𝑘 ⇒

match request with
| inl (𝑡1, 𝑡2)⇒ let𝑏 = ref true in
fork (𝑏 ← false); if !𝑏 then𝑘 𝑡1 else𝑘 𝑡2

| inr ()⇒ (rec 𝑓 (). 𝑓 ())()
|𝑦 ⇒ 𝑦

Fig. 10. Non-determinism handlers.

5.2 Algebraic effects: Haskell-like non-determinism
In this case study, we are interested in evaluating how relational theories can be used to reason about

algebraic effects [Plotkin and Pretnar 2008]. As an illustration, we consider the pair of constructs or
and fail, where 𝑒1 or 𝑒2 models the functionality to non-deterministically run 𝑒1 or 𝑒2, and fail
represents a failed execution path. These constructs are written in 𝜆-blaze using a global effect $ND:
𝑒1 or 𝑒2 ≜ (perform $ND (inl (fun _. 𝑒1, fun _. 𝑒2)))() and fail ≜ perform $ND (inr ()).

The construct 𝑒1 or 𝑒2 performs a $ND effect with thunked versions of 𝑒1 and 𝑒2. After one of them

is non-deterministically chosen by the handler, its execution is forced with (). The construct fail
just performs a $ND effect.

Plotkin and Pretnar [2013] show that or and fail can be described by the algebraic theory
of a monoid: 𝑒1 or (𝑒2 or 𝑒3) = (𝑒1 or 𝑒2) or 𝑒3 and 𝑒 or fail = fail or 𝑒 = 𝑒 . Such an algebraic

theory can be used not only to reason about or and fail but also to state the correctness of an

effect handler providing an implementation of these effects. In short, a handler is correct when the

handling of two programs, that are equal according to the algebraic theory, yields equal results.

This equational correctness criterion suits a pure settingwell, but precludes its application to cases

where the effects or and fail are implemented using native non-determinism. For example, consider

the two handler implementations that appear in Figure 10. The implementation of 𝑒1 or 𝑒2 provided
by run_nd_pure uses a list to collect the results of returning 𝑒1 and the results of returning 𝑒2.

Paths signalled by fail are not added to this list.
17

The implementation of 𝑒1 or 𝑒2 provided

by run_nd_rand chooses the expression to run by reading a location 𝑏 that holds true initially but

is non-deterministically set to false by a forked thread.
18
The handling of fail diverges.

The correctness criterion of Plotkin and Pretnar [2013] can be used to justify run_nd_pure
provides a correct implementation of or and fail with respect to their algebraic theory. How-

ever, run_nd_rand falls out of the scope of their approach. Using relational theories of blaze, it
is possible to introduce a similar handler-correctness criterion applicable to both run_nd_pure
and run_nd_rand:

runNdCorrect (run) ≜ ∀main1,
main2, L .

{
main1() ≾★ main2() ⟨([$ND], [$ND], Nd) :: L⟩ {=} −−∗
runmain1 ≾★ runmain2 ⟨([$ND], [$ND], ⊥) :: L⟩ {=}

The predicate runNdCorrect (run) asserts the correctness of a handler run with respect to a

relational theory Nd. It states that the handling of two handlees main1 and main2 yields the same

results assumingmain1 andmain2 are related under the theory Nd for $ND. The handler run cannot

itself rely on $ND and it must not intercept other effects related by L. The theory Nd enables

algebraic reasoning about or and fail. It is written as the sum of several theories expressing their

17
This implementation is similar to the list instance of MonadPlus’s mplus and mzero [Haskell Community 2023].

18
This implementation is originally given by Frumin et al. [2021, §6.4].
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algebraic laws:

Nd ≜ Assoc1 ⊕ Assoc2 ⊕ Unit1 ⊕ Unit2 ⊕ Unit3 ⊕ Unit4 ⊕ Refl
1
⊕ Refl

2

Assoc1 (𝑒11 or (𝑒12 or 𝑒13), (𝑒21 or 𝑒22) or 𝑒23, 𝑄) ≜ �𝑄 (𝑒11, 𝑒21) ∗ �𝑄 (𝑒12, 𝑒22) ∗ �𝑄 (𝑒13, 𝑒23)
Assoc2 ((𝑒11 or 𝑒12) or 𝑒23, 𝑒21 or (𝑒22 or 𝑒23), 𝑄) ≜ �𝑄 (𝑒11, 𝑒21) ∗ �𝑄 (𝑒12, 𝑒22) ∗ �𝑄 (𝑒13, 𝑒23)
Unit1 (𝑒1 or fail, 𝑒2, 𝑄) ≜ Unit2 (fail or 𝑒1, 𝑒2, 𝑄) ≜ �𝑄 (𝑒1, 𝑒2)
Unit3 (𝑒1, 𝑒2 or fail, 𝑄) ≜ Unit4 (𝑒1, fail or 𝑒2, 𝑄) ≜ £1 ∗ �𝑄 (𝑒1, 𝑒2)
Refl

1
(𝑒11 or 𝑒12, , 𝑒21 or 𝑒22, 𝑄) ≜ �𝑄 (𝑒11, 𝑒21) ∗ �𝑄 (𝑒12, 𝑒22) Refl

2
(fail, fail, _) ≜ True

The theory Assoc1 captures the associativity of or. The return condition 𝑄 is used to express

the condition that the relation holds up to a relation of the subexpressions. The other theories are

written in a similar style, except for Unit3 and Unit4, which charge the user one later credit [Spies
et al. 2022], part of Iris’s machinery to avoid cyclic proofs. Without the charge of one later credit,

the theory Unit4, for example, could be used to relate a terminating 𝑒1 to a diverging 𝑒2 such

as (rec 𝑓 (). fail or 𝑓 ())(). This claim is formally proved [de Vilhena et al. 2026].

As noted in §1, blaze cannot express algebraic theories that are closed under transitivity. Therefore,
Nd is symmetric and reflexive, but not transitive. The lack of support for transitivity is a known

limitation of step-indexed relational logics [Birkedal and Bizjak 2012; Hur et al. 2012].Nd is however

sufficiently expressive to relate non-trivial examples of handlees (§C.3). Using the runNdCorrect
correctness criterion, we show that both run_nd_pure and run_nd_rand are correct with respect

to Nd: runNdCorrect (run_nd_pure) and runNdCorrect (run_nd_rand) hold.

6 Related Work
To our knowledge, this is the first work to introduce a relational separation logic for effect handlers.

In the following paragraphs, we discuss work within closely related topics.

Relational reasoning about effect handlers. Building on the notion of algebraic effects, where
an effect is described by an equational theory, Plotkin and Pretnar [2013] introduce the notion

of correctness of handlers whereby the handler of an effect is correct if the handler respects the
equations describing this effect. This equational approach is well-suited to strictly functional

programs but has never been extended to languages with concurrency and mutable state. We

follow a different approach, namely relational separation logic, but take inspiration from equational

reasoning to introduce a notion of handler correctness that supports these features (§5.2).

Biernacki et al. [2018] introduce binary logical relations for effect handlers. Their biorthogonal-
closed [Pitts and Stark 1999] style of relations inspires similar definitions by several authors [Bier-

nacki et al. 2020; McLaughlin 2020; Zhang and Myers 2019]. Such binary logical relations can be

used as an intermediary step in the proof of contextual refinement. Biernacki et al. [2018] explore

this approach to establish interesting examples of refinement, including a statement about the

ask effect [Biernacki et al. 2018, §4.1], similar to the one studied in §4.2.3, and one about the state
effect [Biernacki et al. 2018, §4.2], ported to our system in our Rocq formalisation.

Logical relations can be used to develop high-level reasoning principles. Biernacki et al. [2018]’s

Lemma 2, for example, can be seen as a form of bind rule. The main limitation of previous logical-

relations approaches is the lack of a comprehensive set of such high-level reasoning rules with which

the user can verify relational properties of programs with handlers without ever being exposed to

details of the model of the logic. Using separation logic as the foundation of our logic also has the

advantage of having a richer assertion language than a language limited to the interpretation of

syntactic types. Such expressivity is key in adding support for higher-order store and concurrency.

(Even though the latter, as discussed in §5.1.1, required original work.)
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Relational reasoning about continuations in Iris. Timany and Birkedal [2019] devise binary

logical relations for programs that manipulate undelimited continuations captured by callcc.
They use these logical relations to verify multiple challenging examples of refinement, one of

which is similar to the fork library we verify in §5.1. Namely, they show that the callcc-based
implementation of fork written in a sequential language refines the fork construct of a language
with native cooperative concurrency. The refinement therefore relates programs written in different

languages. To carry out this refinement, they devise cross-language logical relations. Like previous
works exploiting logical relations, and unlike our work, the lack of a comprehensive set of high-level

reasoning rules necessitates the proofs to be carried out at the level of Iris’s weakest preconditionwp,
which, in their setting, is inconvenient because, in the presence of callcc, the bind rule for their

version of wp is unsound. They mitigate this inconvenience by introducing the context-local
weakest precondition, which admits the bind rule for the price of reduced support for callcc.
(Although notions of weakest precondition that admit the bind rule while keeping convenient

support for callcc exist [de Vilhena 2022, §6.3.2].)

Relational theories. de Vilhena and Pottier [2021] introduce protocols as a mechanism to

allow modular reasoning about programs with effect handlers in a unary setting. The domain of

relational theories iThy (§4.1.1) can be seen as a generalisation to a binary setting of the domain

of protocols [de Vilhena and Pottier 2021, Fig. 4] (Val→ (Val→ iProp)) → iProp. An immediate

generalisation is to replaceVal with a binary typeVal ×Val. A more subtle generalisation is to

subsequently replaceVal with Expr. This is needed to allow relations between effectful and non-

effectful expressions. For the same reason [Biernacki et al. 2018] introduce a similar domain of

semantic effects Eff [Biernacki et al. 2018, §3.2], defined as a predicate of type (Expr2 × (Expr2 →
SProp)) → SProp, where SProp is a type of step-indexed assertions. Allain et al. [2025] introduce a

domain of protocols in Iris that coincides exactly with iThy. However, their focus is on the proof of

correctness of compiler optimisations in a fragment of OCaml without handlers. Consequently, they

derive a notion of simulation that admits a general bind rule with no conditions on contexts. To

validate this rule, their simulation relation, by default, closes protocols under arbitrary evaluation

contexts. In baze, we opt for a more flexible context-local reasoning principle where the user can

choose when and under which contexts to close theories via the context-closure operator (§4.1.2).

This flexibility is key in the layered construction of blaze.

Reasoning about dynamic labels. de Vilhena and Pottier [2023] introduce TesLogic, a unary

logic for effect handlers with dynamic labels in a language similar to 𝜆-blaze. The model of blaze
is inspired by how TesLogic builds on top of Hazel [de Vilhena and Pottier 2021], a unary logic

for handlers which, like baze, lacks the abstraction principles for dynamic labels. The rules of

TesLogic [de Vilhena 2022, Fig. 7.2], however, differ from the ones in blaze in key ways: whereas

they have an explicit rule to reason about handlers, Rule exhaustion-★ can be applied to contexts

without handlers; and, whereas their bind rule is limited to neutral contexts, Rule bind-★ can be

applied to contexts with handlers.

Flexible relational reasoning rules for concurrency. Like Vindum et al. [2022], we notice

limitations of the reasoning rules for concurrency provided by standard relational separation logic.

We have already compared the differences between our approaches in §5.1.1. In short, we both

rely on ghost thread-pool assertions 𝑖 Z⇒ 𝑒 describing the state of thread 𝑖 on the specification side.

However, while their rules require the user to explicitly execute 𝑒 , our rules use the assertions 𝑖 Z⇒ 𝑒

merely as tokens that can be forged, spent, or exchanged during the construction of a proof.
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7 Future Work
Limitations of our current framework indicate directions for future work. An important deficiency

is the lack of a type system. In a relational setting, a type system is particularly useful, because

it offers a syntax-directed approach to prove refinements of the form 𝑒 ≾ 𝑒 . In the future, we

would like to remedy this deficiency by extending 𝜆-blaze with a type system for handlers with

dynamic labels, such as Tes [de Vilhena and Pottier 2023]. It would be interesting to see how blaze
could be used to devise a binary-logical-relations interpretation of Tes and whether the resulting

interpretation could be used to show Tes enforces abstraction principles for programming with

handlers, such as the absence of accidental handling [Zhang and Myers 2019; Zhang et al. 2016].

Finally, we would like to explore alternative definitions of the model. We suspect the later modality

in the definition of baze’s refinement relation can be eliminated by using an alternative method

for constructing recursive definitions, namely Iris’s greatest fixpoint operator [Krebbers et al. 2025;
Team 2025]. Following recent work [Allain et al. 2025; Gäher et al. 2022], we would also like to

investigate the implications of generalising the type of postconditions to a predicate on pairs of

expressions. We believe this generalisation could improve context-local reasoning by allowing our

bind rules (bind and bind-★) to focus on pairs of expressions that do not necessarily terminate

synchronously.
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A Language

𝑒F 𝑣 | 𝑥 | 𝑒 𝑒 | let 𝑥 = 𝑒 in 𝑒 | (𝑒, 𝑒)
| 𝑒.1 | 𝑒.2 | if 𝑒 then 𝑒 else 𝑒

|
match 𝑒 with
| inl𝑥 ⇒ 𝑒
| inr𝑦 ⇒ 𝑒

| inl 𝑒 | inr 𝑒

| let effect E in 𝑒 | perform E 𝑒

|
handle 𝑒 with
| effect E 𝑥, rec? 𝑘 as multi? ⇒ 𝑒
|𝑦 ⇒ 𝑒

| ref 𝑒 | !𝑒 | 𝑒 ← 𝑒 | fork 𝑒 | cas (𝑒,𝑒,𝑒)

|
handle 𝑒 with
| effect $E 𝑥, rec? 𝑘 as multi? ⇒ 𝑒
|𝑦 ⇒ 𝑒

| perform $E 𝑒

𝑣F () | true | false | 𝑛 | rec 𝑓 𝑥 . 𝑒 | (𝑣, 𝑣)
| inl 𝑣 | inr 𝑣 | ℓ | cont ℓ 𝐾 | kont 𝐾

𝐾F [] | 𝑒 𝐾 | 𝐾 𝑣 | let 𝑥 = 𝐾 in 𝑒

| let 𝑥 = 𝑣 in 𝐾 | (𝑒,𝐾) | (𝐾, 𝑣)
| 𝐾.1 | 𝐾.2 | if𝐾 then 𝑒 else 𝑒

|
match 𝐾 with
| inl𝑥 ⇒ 𝑒
| inr𝑦 ⇒ 𝑒

| inl𝐾 | inr𝐾

| perform $E 𝐾

|
handle 𝐾 with
| effect $E 𝑥, rec? 𝑘 as multi? ⇒ 𝑒
|𝑦 ⇒ 𝑒

| ref𝐾 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣

| cas (𝑒,𝑒,𝐾) | cas (𝑒,𝐾,𝑣) | cas (𝐾,𝑣,𝑣)

(a) Syntax of values, expressions, and evaluation contexts. (Runtime terms are displayed in gray.)

effect

{®𝑒 [𝑖 ↦→ 𝐾 [let effect E in 𝑒]];𝜎;𝛿} $E ∉ 𝛿
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{®𝑒 [𝑖 ↦→ 𝐾 [𝑒{$E/E}]];𝜎;𝛿 ⊎ {$E}}

fork

{®𝑒 [𝑖 ↦→ 𝐾 [fork 𝑒]];𝜎;𝛿} 𝑛 = |®𝑒 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{®𝑒 [𝑖 ↦→ 𝐾 [()], 𝑛 ↦→ 𝑒];𝜎;𝛿}

alloc

{®𝑒 [𝑖 ↦→ 𝐾 [ref 𝑣]];𝜎;𝛿} ℓ ∉ 𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
{®𝑒 [𝑖 ↦→ 𝐾 [ℓ]];𝜎 [ℓ ↦→ 𝑣];𝛿}

pure

𝑒1 →p 𝑒2 {®𝑒 [𝑖 ↦→ 𝐾 [𝑒1]];𝜎;𝛿}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{®𝑒 [𝑖 ↦→ 𝐾 [𝑒2]];𝜎;𝛿}

handle-os

𝐻 = handle [] with effect $E 𝑥, rec? 𝑘 ⇒ ℎ |𝑦 ⇒ 𝑟

$E ∉ ℒ(𝐾 ′) ℓ ∉ 𝜎 𝜎 ′ = 𝜎 [ℓ ↦→ true]
𝐾 ′′ = if deep(𝐻 ) then 𝐻 [𝐾 ′] else 𝐾 ′ 𝑤 = cont ℓ 𝐾 ′′

{®𝑒 [𝑖 ↦→ 𝐾 [𝐻 [𝐾 ′ [perform $E 𝑣]]]];𝜎;𝛿} −→ {®𝑒 [𝑖 ↦→ 𝐾 [ℎ{𝑣/𝑥,𝑤/𝑘}]];𝜎 ′;𝛿}

(b) Operational rules.

beta

(rec 𝑓 𝑥 . 𝑒) 𝑣 →p 𝑒{(rec 𝑓 𝑥 . 𝑒)/𝑓 , 𝑣/𝑥}
multi-shot

(kont 𝐾) 𝑣 →p 𝐾 [𝑣]

handle-ms

𝐻 = handle [] with effect $E 𝑥, rec? 𝑘 as multi⇒ ℎ |𝑦 ⇒ 𝑟

$E ∉ ℒ(𝐾) 𝐾 ′ = if deep(𝐻 ) then 𝐻 [𝐾] else 𝐾
𝐻 [𝐾 [perform $E 𝑣]] →p ℎ{𝑣/𝑥, kont 𝐾 ′/𝑘}

(c) Pure-reduction rules.

Fig. 11. Syntax and semantics of 𝜆-blaze.
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B Logic
B.1 Iris instantiation and derived resources

Name Type Purpose

implStore Auth(Loc fin−−⇀ (DFrac × AgVal))
Modelling of the implementation-side

points-to connective (_ ↦→i _).

implLbls Auth(Lbl fin−−⇀ (DFrac × AgUnit))
Modelling of the implementation-side

label predicate (labeli (_, _)).

specPool Auth(N fin−−⇀ Ex Expr) Modelling of the ghost thread-pool

assertion (_ Z⇒ _).

specStore Auth(Lbl fin−−⇀ (DFrac × AgVal))
Modelling of the specification-side

points-to connective (_ ↦→s _).

specLbls Auth(Lbl fin−−⇀ (DFrac × AgUnit))
Modelling of the specification-side label

predicate (labels (_, _)).

Fig. 12. Global ghost variables.

forkPost ≜ 𝜆_. True
stateInterp(𝜎, 𝛿) ≜ ownStorei (𝜎) ∗ ownLblsi (𝛿)

where ownStorei (𝜎) ≜ •
⋃
(ℓ,𝑣) ∈𝜎 {ℓ ↦→ (1, ag(𝑣))}

implStore

ownLblsi (𝛿) ≜ •
⋃

$E∈𝜎 {$E ↦→ (1, ag())}
implLbls

latersPerStep(𝑛) ≜ 𝑛

Fig. 13. Definition of Iris-instantiation-related predicates (forkPost, stateInterp, and latersPerStep).

specCtx ≜ ∃𝜌. ∃®𝑒, 𝜎, 𝛿 . 𝜌 →∗ {®𝑒;𝜎;𝛿} ∗ ownPools (®𝑒) ∗ ownStores (𝜎) ∗ ownLblss (𝛿)
specN

where ownPools (®𝑒) ≜ •
⋃
(𝑖,𝑒 ) ∈®𝑒 {𝑖 ↦→ ex(𝑒)} specPool

ownStores (𝜎) ≜ •
⋃
(ℓ,𝑣) ∈𝜎 {ℓ ↦→ (1, ag(𝑣))}

specStore

ownLblss (𝛿) ≜ •
⋃

$E∈𝛿 {$E ↦→ (1, ag())}
specLbls

specN ≜ 'spec'(∈ String)

Fig. 14. Definition of specCtx.

ℓ
dq↦→i 𝑣 ≜ ◦ {ℓ ↦→ (dq, ag(𝑣))}

implStore

labeli ($E, dq) ≜ ◦ {$E ↦→ (dq, ag())}
implLbls

𝑖 Z⇒ 𝑒 ≜ ◦ {𝑖 ↦→ ex(𝑒)} specStore

ℓ
dq↦→s 𝑣 ≜ ◦ {ℓ ↦→ (dq, ag(𝑣))}

specStore

labels ($E, dq) ≜ ◦ {$E ↦→ (dq, ag())}
specLbls

Fig. 15. Implementation-side and specification-side resources.
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B.2 blaze

monotonicity-gen-★
𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} L ⊑★M �𝑚∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑆 (𝑣𝑙 , 𝑣𝑟 )

𝑒𝑙 ≾★ 𝑒𝑟 ⟨⃝𝑚M⟩ {𝑆}

exhaustion-gen-★
ℒ(𝐾𝑙 ) ⊆ ls𝑙 ℒ(𝐾𝑟 ) ⊆ ls𝑟

𝑒𝑙 ≾★ 𝑒𝑟 ⟨M⟩ {𝑅} M = (ls𝑙 , ls𝑟 , T) :: L N = (ls𝑙 , ls𝑟 , F ) :: (⃝𝑚L)

∧
{
�𝑚∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝐾𝑙 [𝑣𝑙 ] ≾★ 𝐾𝑟 [𝑣𝑟 ] ⟨N⟩ {𝑆}
�𝑚∀𝑒′𝑙 , 𝑒

′
𝑟 . ((ls𝑙 , ls𝑟 ) ⇃↾T) ◀ 𝑒′𝑙 ≾★ 𝑒

′
𝑟 ⟨M⟩ {𝑅} −−∗ 𝐾𝑙 [𝑒′𝑙 ] ≾★ 𝐾𝑟 [𝑒

′
𝑟 ] ⟨N⟩ {𝑆}

𝐾𝑙 [𝑒𝑙 ] ≾★ 𝐾𝑟 [𝑒𝑟 ] ⟨N⟩ {𝑆}

⃝𝑚 [] ≜ []
⃝𝑚 (ls𝑙 , ls𝑟 , T) :: L ≜ (ls𝑙 , ls𝑟 , ⃝𝑚T) :: ⃝𝑚L

Fig. 16. Generalised reasoning rules in blaze.

B.3 Soundness
Definition B.1 (Safe).

safe(𝑒, 𝜙) ≜ ∀𝑒′, ®𝑒𝑓 , 𝜎, 𝛿 .
(
{[0 ↦→ 𝑒]; ∅; ∅}→∗
{[0 ↦→ 𝑒′] ⊎ ®𝑒𝑓 ;𝜎;𝛿}

)
=⇒ ∨


𝑒′ ∈Val ∧ 𝜙 (𝑒′)

∃𝑒′′ . {[0 ↦→ 𝑒′] ⊎ ®𝑒𝑓 ;𝜎;𝛿}→
{[0 ↦→ 𝑒′′] ⊎ _; _; _}

Definition B.2 (Terminates).

terminates(𝑒, 𝜙) ≜ ∃𝑣 . 𝜙 (𝑣) ∧ {[0 ↦→ 𝑒]; ∅; ∅}→∗ {[0 ↦→ 𝑣] ⊎ _; _; _}

Theorem B.3. If ⊢ 𝑒𝑙 ≾ 𝑒𝑟 ⟨⊥⟩ {⌜𝜙⌝}, then safe(𝑒𝑙 , 𝜆𝑣𝑙 . terminates(𝑒𝑟 , 𝜆𝑣𝑟 . 𝜙 (𝑣𝑙 , 𝑣𝑟 ))).

C Case studies
C.1 State
Examples adapted from Biernacki et al. [2018, §4.2]:

run_ask_tell ≜ funmain.
let effect Ask in
let effect Tell in
let ask = fun _. perform Ask () in
let tell = fun𝑦. perform Tell 𝑦 in
let run_ask ≜ fun𝑦main′ . handle main′() with effect Ask (), 𝑘 ⇒ 𝑘 𝑦 | 𝑧 ⇒ 𝑧 in
let run_tell ≜ funmain′ .

handle main′() with effect Tell 𝑦, 𝑘 ⇒ run_ask𝑦 (fun _. 𝑘 ()) | 𝑧 ⇒ 𝑧

in run_tell (fun _. run_ask 0 (fun _. main ask tell))
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run_cell ≜ funmain.
let effect Cell in
let get = fun _. perform Cell (inl ()) in
let set = fun𝑦. perform Cell (inr𝑦) in
let run = funmain.
handle main() with
| effect Cell request, 𝑘 ⇒ fun𝑥 .

match request with
| inl ()⇒ 𝑘 𝑥 𝑥
| inr𝑦 ⇒ 𝑘 ()𝑦

|𝑦 ⇒ fun _. 𝑦
in run (fun _. main get set) 0

C.2 Concurrency

fork-l

𝑖 Z⇒ 𝑒𝑟 𝑒𝑙 ≾ 𝑒𝑟 {True} 𝐾𝑙 [()] ≾ 𝑒′𝑟 ⟨T ⟩ {𝑅}
𝐾𝑙 [fork 𝑒𝑙 ] ≾ 𝑒′𝑟 ⟨T ⟩ {𝑅}

fork-r

∀𝑖 . 𝑖 Z⇒ 𝑒𝑟 −−∗ 𝑒𝑙 ≾ 𝐾𝑙 [()] ⟨T ⟩ {𝑅}
𝑒𝑙 ≾ 𝐾𝑙 [fork 𝑒𝑟 ] ⟨T ⟩ {𝑅}

logical-fork

𝑖 Z⇒ 𝐾𝑟 [𝑒𝑟 ] 𝑒𝑙 ≾ 𝑒𝑟 {𝑅} ∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑖 Z⇒ 𝐾𝑟 [𝑣𝑟 ] −−∗ 𝐾𝑙 [𝑣𝑙 ] ≾ 𝑒′𝑟 ⟨T ⟩ {𝑆}
𝐾𝑙 [𝑒𝑙 ] ≾ 𝑒′𝑟 ⟨T ⟩ {𝑆}

thread-swap

𝑖 Z⇒ 𝐾 [𝑒𝑟 ] ∀𝑗, 𝐾 ′ . 𝑗 Z⇒ 𝐾 ′ [𝑒′𝑟 ] −−∗ 𝑒𝑙 ≾ 𝑒𝑟 {𝑣𝑙 _. ∃𝑣 ′𝑟 . 𝑗 Z⇒ 𝐾 ′ [𝑣 ′𝑟 ] ∗ 𝑅(𝑣𝑙 , 𝑣 ′𝑟 )}
𝑒𝑙 ≾ 𝑒

′
𝑟 ⟨T ⟩ {𝑅}

Fig. 17. Reasoning rules for concurrency in baze.

runCoopSpec ≜ �∀main1, main2.©­­­«
�∀async

1
, async

2
, await1, await2, promise, L .

asyncSpec(async
1
, async

2
, promise, L) −−∗

awaitSpec(await1, await2, promise, L) −−∗
main1 async1 await1 ≾★ main2 async2 await2 ⟨L⟩ {True}

ª®®®¬ −−∗
run_coop

1
main1 ≾★

run_coop
2
main2 {True}

asyncSpec(async
1
, async

2
, promise, L) ≜ �∀task1, task2, 𝑆 .

task1() ≾★ task2() ⟨L⟩ {𝑣𝑙 𝑣𝑟 . � 𝑆 (𝑣𝑙 , 𝑣𝑟 )} −−∗
async

1
task1 ≾★ async

2
task2 ⟨L⟩ {𝑝1 𝑝2. � promise(𝑝1, 𝑝2, 𝑆)}

awaitSpec(await1, await2, promise, L) ≜ �∀𝑝1, 𝑝2, 𝑆 .
promise(𝑝1, 𝑝2, 𝑆) −−∗ await1 𝑝1 ≾★ await2 𝑝2 ⟨L⟩ {𝑣𝑙 𝑣𝑟 . � 𝑆 (𝑣𝑙 , 𝑣𝑟 )}

Fig. 18. Async/await case study: Specification.
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Relational theory.

Coop ≜ Async ⊕ Await

Async(perform $Coop (inl task1), fork (task2()), 𝑄) ≜ ∃𝑆.
⊲ task1() ≾★ task2() ⟨[([$Coop], [$Await], Coop)]⟩ {𝑣𝑙 𝑣𝑟 . � 𝑆 (𝑣𝑙 , 𝑣𝑟 )} ∗
∀𝑝1, 𝑝2 . promise(𝑝1, 𝑝2, 𝑆) −−∗ 𝑄 (𝑝1, 𝑝2)

Await (perform $Coop (inr𝑝1), perform $Await 𝑝2, 𝑄) ≜ ∃𝑆.
promise(𝑝1, 𝑝2, 𝑆) ∗ ∀𝑣𝑙 , 𝑣𝑟 . � 𝑆 (𝑣𝑙 , 𝑣𝑟 ) −−∗ 𝑄 (𝑣𝑙 , 𝑣𝑟 )

promise(𝑝1, 𝑝2, 𝑆) ≜ ∃𝜏 . inMap(𝑝1, 𝑝2, 𝜏, 𝑆)

Ghost resources.

token(𝜏) ≜ ex(•) 𝜏
inMap(𝑝1, 𝑝2, 𝜏, 𝑆) ≜ ◦ {(𝑝1, 𝑝2, 𝜏) ↦→ 𝑆} 𝑚𝑎𝑝

isMap(𝑀) ≜ •𝑀 𝑚𝑎𝑝

Invariants and predicates.

queueInv(𝑞, ks, ks′) ≜ isQueue(𝑞, ks.1) ∗(∗(𝑘, ( 𝑗, 𝐾 ) ) ∈ks . ∃𝑒𝑟 . 𝑗 Z⇒ 𝐾 [𝑒𝑟 ] ∗ ready(𝑞, 𝑘(), 𝑒𝑟 )
)
∗
(∗(_, ( 𝑗, 𝐾 ) ) ∈ks′ . ∃𝑣𝑟 . 𝑗 Z⇒ 𝐾 [𝑣𝑟 ]

)
promiseInv ≜ ∃𝑀. isMap(𝑀) ∗

∗{ (𝑝1, 𝑝2, 𝜏 ) ↦→𝑆 }∈𝑀 . ∨

∃𝑣𝑙 , 𝑣𝑟 .

(
𝑝1 ↦→i inl 𝑣𝑙 ∗ � 𝑆 (𝑣𝑙 , 𝑣𝑟 )
𝑝2 ↦→s inl 𝑣𝑟 ∗ token(𝜏)

)
∃ks. ©­«

𝑝1 ↦→i inr ks.1
𝑝2 ↦→s inr ks.2∗(𝑘1, 𝑘2 ) ∈ks . waiting(𝑞, 𝑆, 𝑘1, 𝑘2)

ª®¬
ready(𝑞, 𝑒𝑙 , 𝑒𝑟 ) ≜ ∀ks, ks′ . ⊲ promiseInv𝑞 −−∗ ⊲ queueInv(𝑞, ks, ks′) −−∗
𝑒𝑙 ≾★ 𝑒𝑟 ⟨[([$Coop], [$Await], ⊥)]⟩ {queueInv(𝑞, [], ks ++ ks′)}

waiting(𝑞, 𝑆, 𝑘1, 𝑘2) ≜ ∀𝑣𝑙 , 𝑣𝑟 . � 𝑆 (𝑣𝑙 , 𝑣𝑟 ) −−∗ ready(𝑞, (𝑘1 𝑣𝑙 ), (𝑘2 𝑣𝑟 ))

Fig. 19. Async/await case study: Internal logical definitions.

C.2.1 Async/await – Part I.

C.2.2 Async/await – Part II.

Theorem C.1.

terminates(run_coop
1
deadlock, 𝜆_. True)

Definition C.2.
diverges(𝑒) ≜ safe(𝑒, 𝜆_. False)

Theorem C.3.

diverges(run_coop
3
deadlock)

Corollary C.4.

¬(⊢ run_coop
1
deadlock ≾★ run_coop

3
deadlock {True})
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C.3 Non-determinism
Example of a derivable refinement using the relational theory Nd:

(let𝑥 = 0 or (1 or 2) in if (fail or true) then𝑥 or (𝑥 + 1) else fail) ≾★
(let𝑥 = (0 or 1) or 2 in 𝑥 or (𝑥 + 1)) ⟨([$ND], [$ND], Nd) :: L⟩ {=}

C.3.1 Invariants. We follow ReLoC [Frumin et al. 2021]’s approach to add support for invariants:

we add two general rules for allocating and closing invariants and one rule for opening invariant

per atomic instruction. Effectively, this approach consists of three steps:

(1) Masks. First, we make surgical changes to the model of baze to parameterize the refinement

relation on masks [Jung et al. 2018, §2]. These surgical changes are shown in Figure 20. The

model of blaze can then be accordingly modified in a straightforward way (Figure 21).

(2) Invariant rules. Then, based on this updated model, we state and prove rules for allocating,

closing, and opening invariants (Figure 22). As noted, the rules for allocating and closing

invariants are general, whereas the rules for opening invariants are specific to atomic instruc-

tions. The rules for closing and opening invariants depend on the opaque assertion closeInv,
which is internally defined as follows:

closeInvN (𝑃) ≜ ⊲ 𝑃 ≡−∗(⊤∖N ↑ ) ⊤ True

(3) Step rules. Finally, we must add rules to allow partial execution on the specification side

of the refinement under an arbitrary mask E. Such rules are necessary because, under

the hood, partial-execution-style reasoning on the specification side requires opening the

invariant specN in specCtx (see the definition of specCtx in Figure 14). Therefore, to allow

the application of such rules after opening an invariant 𝑃
N
, we must show that specN ≠ N ,

because, otherwise, we could be opening the same invariant twice. The updated rules appear

in Figures 24 and 25.

OE (𝑒𝑙 , 𝑒𝑟 , 𝑆) ≜ ∀𝑖, 𝐾 . specCtx −−∗ 𝑖 Z⇒ 𝐾 [𝑒𝑟 ] ≡−∗E ⊤wp 𝑒𝑙 {𝑣𝑙 . ∃𝑣𝑟 . 𝑖 Z⇒ 𝐾 [𝑣𝑟 ] ∗ 𝑆 (𝑣𝑙 , 𝑣𝑟 )}
𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}E ≜ ∀𝐾𝑙 , 𝐾𝑟 , 𝑆 . {𝑅}𝐾𝑙 ≾ 𝐾𝑟 ⟨T ⟩ {𝑆} −−∗ OE (𝐾𝑙 [𝑒𝑙 ], 𝐾𝑟 [𝑒𝑟 ], 𝑆)

{𝑅}𝐾𝑙 ≾ 𝐾𝑟 ⟨T ⟩ {𝑆} ≜ ∧
{
∀𝑣𝑙 , 𝑣𝑟 . 𝑅(𝑣𝑙 , 𝑣𝑟 ) −−∗ O⊤ (𝐾𝑙 [𝑣𝑙 ], 𝐾𝑟 [𝑣𝑟 ], 𝑆)
∀𝑒𝑙 , 𝑒𝑟 . T ◀ 𝑒𝑙 ≾ 𝑒𝑟 {𝑅} −−∗ O⊤ (𝐾𝑙 [𝑒𝑙 ], 𝐾𝑟 [𝑒𝑟 ], 𝑆)

T ◀ 𝑒𝑙 ≾ 𝑒𝑟 {𝑅} ≜ ∃𝑄. T (𝑒𝑙 , 𝑒𝑟 , 𝑄) ∗ � ⊲∀𝑒′
𝑙
, 𝑒′𝑟 . 𝑄 (𝑒′𝑙 , 𝑒

′
𝑟 ) −−∗ 𝑒′𝑙 ≾ 𝑒

′
𝑟 ⟨T ⟩ {𝑅}⊤

Fig. 20. Model of baze with masks.

𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}E ≜ valid (L) −−∗ 𝑒𝑙 ≾ 𝑒𝑟 ⟨interp(L)⟩ {𝑅}E

Fig. 21. Model of blaze with masks.
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alloc-inv

⊲ 𝑃 𝑃
N −−∗ 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}E

𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}E

close-inv

closeInvN (𝑃) ⊲ 𝑃 𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}⊤
𝑒𝑙 ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} (⊤∖N ↑ )

load-open-inv

𝑃
N

⊲ 𝑃 −−∗ closeInvN (𝑃) −−∗ ∃𝑣 . ⊲ ℓ
𝑞

↦→i 𝑣 ∗ ⊲

(
ℓ

𝑞

↦→i 𝑣 −−∗ 𝐾𝑙 [𝑣] ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} (⊤∖N ↑ )
)

𝐾𝑙 [!ℓ] ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}⊤

store-open-inv

𝑃
N

⊲ 𝑃 −−∗ closeInvN (𝑃) −−∗ ⊲ ℓ ↦→i _ ∗ ⊲
(
ℓ ↦→i 𝑣 −−∗ 𝐾𝑙 [()] ≾ 𝑒𝑟 ⟨T ⟩ {𝑅} (⊤∖N ↑ )

)
𝐾𝑙 [ℓ ← 𝑣] ≾ 𝑒𝑟 ⟨T ⟩ {𝑅}⊤

Fig. 22. Reasoning rules for allocating, closing, and opening invariants in baze.

alloc-inv-★

⊲ 𝑃 𝑃
N −−∗ 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}E

𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}E

close-inv-★
closeInvN (𝑃) ⊲ 𝑃 𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}⊤

𝑒𝑙 ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} (⊤∖N ↑ )

load-open-inv-★

𝑃
N

⊲ 𝑃 −−∗ closeInvN (𝑃) −−∗ ∃𝑣 . ⊲ ℓ
𝑞

↦→i 𝑣 ∗ ⊲

(
ℓ

𝑞

↦→i 𝑣 −−∗ 𝐾𝑙 [𝑣] ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} (⊤∖N ↑ )
)

𝐾𝑙 [!ℓ] ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}⊤

store-open-inv-★

𝑃
N

⊲ 𝑃 −−∗ closeInvN (𝑃) −−∗ ⊲ ℓ ↦→i _ ∗ ⊲
(
ℓ ↦→i 𝑣 −−∗ 𝐾𝑙 [()] ≾★ 𝑒𝑟 ⟨L⟩ {𝑅} (⊤∖N ↑ )

)
𝐾𝑙 [ℓ ← 𝑣] ≾★ 𝑒𝑟 ⟨L⟩ {𝑅}⊤

Fig. 23. Reasoning rules for allocating, closing, and opening invariants in blaze.

step-r-mask

specN ↑ ⊆ E 𝑒𝑟 →p 𝑒
′
𝑟 𝑒𝑙 ≾ 𝐾 [𝑒′𝑟 ] ⟨T ⟩ {𝑅}E

𝑒𝑙 ≾ 𝐾 [𝑒𝑟 ] ⟨T ⟩ {𝑅}E

load-r-mask

specN ↑ ⊆ E ℓ
𝑞

↦→s 𝑣

ℓ
𝑞

↦→s 𝑣 −−∗ 𝑒𝑙 ≾ 𝐾 [𝑣] ⟨T ⟩ {𝑅}E
𝑒𝑙 ≾ 𝐾 [!ℓ] ⟨T ⟩ {𝑅}E

store-r-mask

specN ↑ ⊆ E ℓ ↦→s _

ℓ ↦→s 𝑣 −−∗ 𝑒𝑙 ≾ 𝐾 [()] ⟨T ⟩ {𝑅}E
𝑒𝑙 ≾ 𝐾 [ℓ ← 𝑣] ⟨T ⟩ {𝑅}E

Fig. 24. Specification-side rules under arbitrary masks in baze.
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step-r-mask-★

specN ↑ ⊆ E 𝑒𝑟 →p 𝑒
′
𝑟 𝑒𝑙 ≾★ 𝐾 [𝑒′𝑟 ] ⟨T ⟩ {𝑅}E

𝑒𝑙 ≾★ 𝐾 [𝑒𝑟 ] ⟨T ⟩ {𝑅}E

load-r-mask-★

specN ↑ ⊆ E ℓ
𝑞

↦→s 𝑣

ℓ
𝑞

↦→s 𝑣 −−∗ 𝑒𝑙 ≾★ 𝐾 [𝑣] ⟨T ⟩ {𝑅}E
𝑒𝑙 ≾★ 𝐾 [!ℓ] ⟨T ⟩ {𝑅}E

store-r-mask-★

specN ↑ ⊆ E ℓ ↦→s _

ℓ ↦→s 𝑣 −−∗ 𝑒𝑙 ≾★ 𝐾 [()] ⟨T ⟩ {𝑅}E
𝑒𝑙 ≾★ 𝐾 [ℓ ← 𝑣] ⟨T ⟩ {𝑅}E

Fig. 25. Specification-side rules under arbitrary masks in blaze.
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