Extending the C/C++ Memory Model
with Inline Assembly

joint work with Ori Lahav, Viktor Vafeiadis, and Azalea Raad
presented by Paulo Emilio de Vilhena
on the | 23rd of October, 2024

Overview

Problem.
[Specify the semantics of inline x86 assembly in a concurrent setting with shared memory.]

Motivation.

Inline assembly allows one to insert
snippets of x86 assembly in C/C++ code.

Applications of inline assembly include
® Writing efficient code directly in x86 assembly
® Access to instructions that do not exist in C/C++

® Customizing call conventions

Challenge.

Architecture (x86) and source language (C/C++) follow incompatible concurrency models.
2

Overview

Problem.
[Specify the semantics of inline x86 assembly in a concurrent setting with shared memory.]

Motivation. - N

Inline assembly allows one to insert src = 42, dst = 03

snippets of x86 assembly in C/C++ code. // non-temporal store

asm volatile (

Applications of inline assembly include e L)y e

® : [dst] "=m" (dst)
.) o : [src] "r" (src)
® Access to instructions that do not exist in C/C++ : "memory");
o assert(dst == 42);
Challenge.

Architecture (x86) and source language (C/C++) follow incompatible concurrency models.
3

Overview

Problem.
[Specify the semantics of inline x86 assembly in a concurrent setting with shared memory.]

Motivation. - N

Inline assembly allows one to insert src = 42, dst = 03

snippets of x86 assembly in C/C++ code. // non-temporal store

asm volatile (

Applications of inline assembly include e L)y e

® Writing efficient code directly in x86 assembly : %gig =M Eg ?8

® Access to instructions that do not exist in C/C++ : "memory") ;

® Customizing call conventions assert(dst == 42);
Challenge.

Architecture (x86) and source language (C/C++) follow incompatible concurrency models.
4

Introduction to RC11 and Ex86

RCi11[Lahav et al.] is a model for C/C++. Ex86 [Raad et al.] is a model for
x86 assembly.
To Ta To Ta
X =sc 1 a =sc Yy X = 1 a =y
y :=sc 1 b =sc X y = 1 b = x

na— rlx — rel,acq — acqrel — sc

\V4
atomics

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

RCi11[Lahav et al.] is a model for C/C++. Ex86 [Raad et al.] is a model for
x86 assembly.
Te Ta To Ta
X :=sc 1 a =sc y//1 x := 1 a=y
y :=sc 1 b =sc x [[/Q | disallowed y = 1 b = x
SC
\/
atomics

sc is the strongest mode:

a=1 = b=1

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

RCi11[Lahav et al.] is a model for C/C++. Ex86 [Raad et al.] is a model for
x86 assembly.

To Ta To Ta

X :=rlx 1 a =rixy //1 X 1= 1 a =y

y =rlx 1 b =rix X //O allowed y = 1 b = x

rix

\V4
atomics

rix is the weakest atomic mode:

a =1 74) b =1

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

RCi11[Lahav et al.] is a model for C/C++. Ex86 [Raad et al.] is a model for
x86 assembly.
Te Ta To Ta
X = 1 a =acq y //1 x := 1 a=y
y :=rel 1 b =rix x [[Q | disallowed y = 1 b = x
rel, acq
\/
atomics

rel-acq pairs restore synchronization:

a=1 = b=1

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

RCi11[Lahav et al.] is a model for C/C++. Ex86 [Raad et al.] is a model for
x86 assembly.
Te T1 Te T1
X = 1 a =acq y //1 x := 1 a=y]/[/1
[y :=rel 1 b = x []0 } disallowed [y =1 b =x//0 } disallowed
rel, acq
\/
atomics

In x86, plain reads and writes follow TSO:
rel-acq pairs restore synchronization: Only write-read pairs can be reordered.

a=1 = b=1 a=1 = b=1

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

RCi11[Lahav et al.] is a model for C/C++. Ex86 [Raad et al.] is a model for
x86 assembly.
Te T1 Te T1
X &= 1 a =acq y //1 x := 1 a=y/[/1
[y i=rel 1 b = x []0O 1 disallowed [y i=nt 1 b=x//0 1 allowed
rel, acq
\V
atomics
Non-temporal stores bypass the cache:
rel-acq pairs restore synchronization: They can be reordered with other writes.

a=1 = b=1 a:l%b:l

10

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Challenges - Non-temporal stores

Consequence to C/C++ memory model: nt stores break rel-acq synchronization!

Te Ta

asm{x :=nt 1} a =acq y //1

y :=rel 1 X|| b =rix x //0 | allowed

a=1 5 b=1

Challenges:
e Relax RC11 in such a way that this behavior is allowed.
e Suggest how to restore synchronization (e.g. through x86’s store fences).

11

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

Te T1 Te T1
asm{x := 1} a =rlx y compile N X =1 a=y]//1
y :=rlx 1 b =rlx x y :=1 b = x //0 | disallowed

12

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

Te T1 Te T1
asm{x := 1} a =rlx y annpde= X =1 a=y]//1
y :=rlx 1 b =rlx x y :=1 b = x //0 | disallowed

transform l
Te T1

asm{x := 1} b =rlx X
y =rlx 1 a =rlx y

13

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

To T1 Te T1

asm{x := 1} a =rlx y compile . X =1 a=y]//1

y :=rlx 1 b =rlx x y :=1 b = x //0 | disallowed
transform l

To T1 Te T1

asm{x := 1} b =rlx x compile N x =1 b =x//0

y :=rlx 1 a =rix y y =1 a =y [[/[1 |allowed

14

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

Te T1 Te T1

asm{x := 1} a =rlx y compile . X =1 a=y]//1

y :=rlx 1 b =rlx x y :=1 b = x //0 | disallowed
transform l

To T1 Te T1

asm{x := 1} b =rlx x compile N x =1 b =x//0

y :=rlx 1 a =rix y y =1 a =y [[/[1 |allowed

Challenge: Enforce Ex86 consistency in a way that does not break optimizations.

15

Challenges - Access modes are unfit for inline assembly

It is not possible to model inline-assembly accesses using RC11 access modes:

na — rlx — rel,acq — acqrel — scC

V \V
Weaker than plain read/writes. Appareﬁtly stronger.
Inline x86 read/writes cannot be (In fact, incomparable)
optimized.

Challenges:
e Invent new access modes for inline-assembly accesses.

e Discover how the new access modes relate to the existing RC11 ones.
16

RC11%%86 - The extended model

We introduce RC115*%¢| an extended model for C/C++ with inline x86 assembly.

RC11%%8¢ handles the three aforementioned challenges:

1. Non-temporal stores do not enforce synchronization
unless followed by a (sufficiently strong) barrier.

) . To T1

0 1 e I

{ by || asm{x :=nt 1} a =aca y //1

:=nt =
x asm{x :=n a =acq y //1 asm{sfence} b =rlx x //0
y :=rel 1 | b =rix x //0
y =rel 1

allowed - ot

disallowed

17

RC11%%86 - The extended model

We introduce RC115*%¢| an extended model for C/C++ with inline x86 assembly.

RC11%%8¢ handles the three aforementioned challenges:

2. Threads must use inline assembly to abide by Ex86 consistency.
Compiler optimizations can be applied to C/C++ portions of code.

To T T2
asm{x := 1} asm{a = y} //1 c =rlx y
y *=rix 1 b =rlx X // Q d =rlx X

disallowed

18

RC11%%86 - The extended model

We introduce RC115*%¢| an extended model for C/C++ with inline x86 assembly.

RC11%%8¢ handles the three aforementioned challenges:

2. Threads must use inline assembly to abide by Ex86 consistency.
Compiler optimizations can be applied to C/C++ portions of code.

Te T1 T2
asm{x := 1} asm{a = y} c =rlx y //1
y :=rlx 1 b =rlx X d =rix x // O

allowed

19

RC11%%86 - The extended model

We introduce RC115*%¢| an extended model for C/C++ with inline x86 assembly.

RC11%%8¢ handles the three aforementioned challenges:

3. Introduction of new access modes for non-temporal stores (nt),
plain reads/writes (tso), and store fences (sf).

na tso
\ /
rix — rel,acq — acqrel
/

nt sf — sc

20

RC11%%86 - The extended model

Non-temporal (nt) stores can be weaker than non-atomic (na) accesses.

X

na nt

Te T1 To T1
asm{x :=nt 1} || a =acq y //1 X :=na 1 a =acq y //1
y i=rel 1 if (a == 1) y :=rel 1 |[if (a == 1)

b =rlx x //0 b =rix x //0

allowed disallowed

21

RC11%%86 - The extended model

Conversely, non-atomic (na) accesses can be weaker than non-temporal (nt) stores.

na x nt
Toe T1 Toe T1
[x :=na 1 ‘ a =rlx X //42} [asm{x :=nt 1} || a =rlx X //4;}
allowed disallowed

Why races on inline-assembly accesses are not UB?

There are multiple reasons, we cite two:
e Programs fully written in inline assembly would not abide by x86 consistency.
e Inline assembly is not optimized like na accesses.
22

RC11%%86 - The extended model

The semantics of sc accesses can be weaker than TSO.

tso x sc

Te T1 Te T1

asm{x := 1} asm{a = y} //1 X :=sc 1 a=sc y//1
y :=rlx 1 b =rlx x /] 0 y :=rlx 1 b =rlx x //0

disallowed allowed

23

RC115%3¢ - Properties

Extension of RC11. Programs without inline assembly have RC11 semantics:
P e RCu ~ [P ﬂRCuE"g6 - [P ﬂRC11

Extension of Ex86. Programs fully written in inline assembly have Ex86 semantics:

P € Ex86 = [asm{P}ﬂRCﬂEx%: ks ﬂEx86

Data-race freedom. Data-race-free programs have SC semantics:

Phassc-onlyraces = [P [, ns= [P .

24

RC115%3¢ - Properties

We show correctness of compilation with respect to RC115%¢ and Ex86.

Moreover, sound compiler optimizations in RC11 are also sound in RC11*¢;
There is however one caveat: In RC115%¢, sequentialization is not sound in general.

In x86, reading an external write enforces synchronization,
whereas reading an internal write does not.

To T1 T2 Te & Ta T2
asm{x := 1} asm{a = x [/1 asm{y := 1 asm{x := 1 X asm{y := 1
b =vy}//o mfence a=x«//1 mfence

‘ c=x}]//0 b=y} /0O c=x} //0

disallowed allowed
Mng

transformation 25

Conclusion

Inline assembly is an important tool that is not handled by the RC11 model.

Many challenges exist.
e Non-temporal stores break rel-acq synchronization.
e Ex86-consistency is incompatible with many compiler optimizations.
e Inline-assembly accesses cannot be modeled with RC11 access modes.

We introduce RC115*%6 an extended model for C/C++ with inline x86 assembly.
e One can restore rel-acq synchronization through barriers, such as store fences.
e The scope of Ex86-consistency is limited to threads with inline assembly.
(Compiler optimizations can be applied to C/C++ portions of code.)
e Inline-assembly accesses are modeled using new accesses modes.

The RC112*4¢ model enjoys many properties
e Extension of RC11 and Ex86
e Data-race freedom
e Correctness of compilation and compiler optimizations 26

Questions

