
Extending the C/C++ Memory Model
with Inline Assembly

presented by Paulo Emílio de Vilhena
joint work with Ori Lahav, Viktor Vafeiadis, and Azalea Raad

on the 23rd of October, 2024

Overview

Problem.
 Specify the semantics of inline x86 assembly in a concurrent setting with shared memory.

Motivation.
 Inline assembly allows one to insert
 snippets of x86 assembly in C/C++ code.

Applications of inline assembly include
Writing efficient code directly in x86 assembly●

Access to instructions that do not exist in C/C++●

Customizing call conventions●

2

Challenge.
 Architecture (x86) and source language (C/C++) follow incompatible concurrency models.

Overview

Problem.
 Specify the semantics of inline x86 assembly in a concurrent setting with shared memory.

Motivation.
 Inline assembly allows one to insert
 snippets of x86 assembly in C/C++ code.

Applications of inline assembly include
Writing efficient code directly in x86 assembly
Access to instructions that do not exist in C/C++
Customizing call conventions

int src = 42, dst = 0;

// non-temporal store
asm volatile (
 "movnti %[src], %[dst]"
 : [dst] "=m" (dst)
 : [src] "r" (src)
 : "memory");

assert(dst == 42);

3

Challenge.
 Architecture (x86) and source language (C/C++) follow incompatible concurrency models.

●
●
●

Overview

Problem.
 Specify the semantics of inline x86 assembly in a concurrent setting with shared memory.

Motivation.
 Inline assembly allows one to insert
 snippets of x86 assembly in C/C++ code.

Applications of inline assembly include
Writing efficient code directly in x86 assembly
Access to instructions that do not exist in C/C++
Customizing call conventions

int src = 42, dst = 0;

// non-temporal store
asm volatile (
 "movnti %[src], %[dst]"
 : [dst] "=m" (dst)
 : [src] "r" (src)
 : "memory");

assert(dst == 42);

Challenge.
 Architecture (x86) and source language (C/C++) follow incompatible concurrency models.

4

●
●
●

Introduction to RC11 and Ex86

x :=sc 1
y :=sc 1

T0 T1
a =sc y
b =sc x

rlx screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
 x86 assembly.

T0 T1
a = y
b = x

RC11[Lahav et al.] is a model for C/C++.

x := 1
y := 1

5

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

x :=sc 1
y :=sc 1

T0 T1
a =sc y // 1
b =sc x // 0

rlx screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
 x86 assembly.

T0 T1
a = y
b = x

RC11[Lahav et al.] is a model for C/C++.

sc is the strongest mode:

x := 1
y := 1

a = 1 ⟹ b = 1

6

disallowed

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

x :=rlx 1
y :=rlx 1

T0 T1
a =rlx y // 1
b =rlx x // 0

rlx screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
 x86 assembly.

T0 T1
a = y
b = x

RC11[Lahav et al.] is a model for C/C++.

rlx is the weakest atomic mode:

x := 1
y := 1

a = 1 ⟹ b = 1

7

allowed

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

x :=rlx 1
y :=rel 1

T0 T1
a =acq y // 1
b =rlx x // 0

rlx screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
 x86 assembly.

T0 T1
a = y
b = x

RC11[Lahav et al.] is a model for C/C++.

rel-acq pairs restore synchronization:

x := 1
y := 1

a = 1 ⟹ b = 1

8

disallowed

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

x :=rlx 1
y :=rel 1

T0 T1
a =acq y // 1
b =rlx x // 0

rlx screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
 x86 assembly.

T0 T1
a = y // 1
b = x // 0

RC11[Lahav et al.] is a model for C/C++.

rel-acq pairs restore synchronization:
In x86, plain reads and writes follow TSO:
 Only write-read pairs can be reordered.

x := 1
y := 1

a = 1 ⟹ b = 1 a = 1 ⟹ b = 1

9

disallowed disallowed

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Introduction to RC11 and Ex86

x :=rlx 1
y :=rel 1

T0 T1
a =acq y // 1
b =rlx x // 0

rlx screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
 x86 assembly.

x := 1
y :=nt 1

T0 T1
a = y // 1
b = x // 0

RC11[Lahav et al.] is a model for C/C++.

rel-acq pairs restore synchronization:
Non-temporal stores bypass the cache:
 They can be reordered with other writes.

a = 1 ⟹ b = 1 a = 1 ⟹ b = 1

10

alloweddisallowed

https://www.soundandcomplete.org/papers/POPL2022/NT/NT-POPL2022.pdf
https://plv.mpi-sws.org/scfix/

Consequence to C/C++ memory model: nt stores break rel-acq synchronization!

T1

a =acq y // 1

b =rlx x // 0

T0

asm{x :=nt 1}

y :=rel 1

Challenges:
● Relax RC11 in such a way that this behavior is allowed.
● Suggest how to restore synchronization (e.g. through x86’s store fences).

Challenges - Non-temporal stores

a = 1 ⟹ b = 1

11

allowed

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

compile x := 1
y := 1

T0 T1
a = y // 1
b = x // 0

asm{x := 1}
y :=rlx 1

T0 T1
a =rlx y
b =rlx x

12

disallowed

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

compile x := 1
y := 1

T0 T1
a = y // 1
b = x // 0

asm{x := 1}
y :=rlx 1

T0 T1
a =rlx y
b =rlx x

transform

asm{x := 1}
y :=rlx 1

T0 T1
b =rlx x
a =rlx y

13

disallowed

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

compile x := 1
y := 1

T0 T1
a = y // 1
b = x // 0

asm{x := 1}
y :=rlx 1

T0 T1
a =rlx y
b =rlx x

transform

asm{x := 1}
y :=rlx 1

T0 T1
b =rlx x
a =rlx y

14

disallowed

compile x := 1
y := 1

T0 T1
b = x // 0
a = y // 1 allowed

Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

compile x := 1
y := 1

T0 T1
a = y // 1
b = x // 0

asm{x := 1}
y :=rlx 1

T0 T1
a =rlx y
b =rlx x

transform

asm{x := 1}
y :=rlx 1

T0 T1
b =rlx x
a =rlx y

15

disallowed

compile x := 1
y := 1

T0 T1
b = x // 0
a = y // 1 allowed

Challenge: Enforce Ex86 consistency in a way that does not break optimizations.

Challenges - Access modes are unfit for inline assembly

It is not possible to model inline-assembly accesses using RC11 access modes:

 na rlx rel, acq acqrel sc

Weaker than plain read/writes.
Inline x86 read/writes cannot be

optimized.

Apparently stronger.
(In fact, incomparable)

Challenges:
● Invent new access modes for inline-assembly accesses.
● Discover how the new access modes relate to the existing RC11 ones.

16

RC11Ex86 - The extended model

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.

RC11Ex86 handles the three aforementioned challenges:

T1

a =acq y // 1

b =rlx x // 0

T0

asm{x :=nt 1}

y :=rel 1

T1

a =acq y // 1

b =rlx x // 0

T0

asm{x :=nt 1}

asm{sfence}

y :=rel 1

1. Non-temporal stores do not enforce synchronization
 unless followed by a (sufficiently strong) barrier.

17

allowed
disallowed

 // 1

 // 0

RC11Ex86 - The extended model

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.

RC11Ex86 handles the three aforementioned challenges:

2. Threads must use inline assembly to abide by Ex86 consistency.
 Compiler optimizations can be applied to C/C++ portions of code.

T1

asm{a = y}

b =rlx x

T0

asm{x := 1}

y :=rlx 1

1. Non-temporal stores do not enforce synchronization
 unless followed by a (sufficiently strong) barrier.

c =rlx y

d =rlx x

T2

18

disallowed

 // 1

 // 0

RC11Ex86 - The extended model

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.

RC11Ex86 handles the three aforementioned challenges:

2. Threads must use inline assembly to abide by Ex86 consistency.
 Compiler optimizations can be applied to C/C++ portions of code.

T1

asm{a = y}

b =rlx x

T0

asm{x := 1}

y :=rlx 1

1. Non-temporal stores do not enforce synchronization
 unless followed by a (sufficiently strong) barrier.

c =rlx y

d =rlx x

T2

19

allowed

RC11Ex86 - The extended model

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.

RC11Ex86 handles the three aforementioned challenges:

2. Threads must use inline assembly to abide by Ex86 consistency.
 Compiler optimizations can be applied to C/C++ portions of code.

1. Non-temporal stores do not enforce synchronization
 unless followed by a (sufficiently strong) barrier.

3. Introduction of new access modes for non-temporal stores (nt),
 plain reads/writes (tso), and store fences (sf).

rlx

 sc

rel, acq

na

nt

tso

sf

?
?

acqrel

20

RC11Ex86 - The extended model

Non-temporal (nt) stores can be weaker than non-atomic (na) accesses.

ntna

T1
a =acq y // 1

if (a == 1)

 b =rlx x // 0

T0
asm{x :=nt 1}

y :=rel 1

T1

a =acq y // 1

if (a == 1)

 b =rlx x // 0

T0

x :=na 1

y :=rel 1

21

allowed disallowed

RC11Ex86 - The extended model

Conversely, non-atomic (na) accesses can be weaker than non-temporal (nt) stores.

ntna

T1

a =rlx x // 42

T0

asm{x :=nt 1}

T1

a =rlx x // 42x :=na 1

T0

There are multiple reasons, we cite two:
● Programs fully written in inline assembly would not abide by x86 consistency.
● Inline assembly is not optimized like na accesses.

Why races on inline-assembly accesses are not UB?

22

allowed disallowed

RC11Ex86 - The extended model

The semantics of sc accesses can be weaker than TSO.

sctso

T1
asm{a = y} // 1

b =rlx x // 0

T0
asm{x := 1}

y :=rlx 1

T1
a =sc y // 1

b =rlx x // 0

x :=sc 1

y :=rlx 1

T0

23

alloweddisallowed

RC11Ex86 - Properties

Extension of RC11. Programs without inline assembly have RC11 semantics:

Extension of Ex86. Programs fully written in inline assembly have Ex86 semantics:

Data-race freedom. Data-race-free programs have SC semantics:

P
RC11Ex86

= P
RC11

P ∈ RC11 ⇒

asm{P}
RC11Ex86

= P
Ex86

P ∈ Ex86 ⇒

P
RC11Ex86

= P
SC

P has sc-only races ⇒

24

RC11Ex86 - Properties

Moreover, sound compiler optimizations in RC11 are also sound in RC11Ex86;
 There is however one caveat: In RC11Ex86, sequentialization is not sound in general.

In x86, reading an external write enforces synchronization,
 whereas reading an internal write does not.

 // 1

 // 0

T1
asm{a = x

 b = y}

T0
asm{x := 1} asm{y := 1

 mfence

 c = x}

T2

 // 0

 // 1

 // 0

T0 & T1
asm{x := 1

 a = x

 b = y}

asm{y := 1

 mfence

 c = x}

T2

 // 0

We show correctness of compilation with respect to RC11Ex86 and Ex86.

wrong
transformation 25

disallowed allowed

Conclusion

Inline assembly is an important tool that is not handled by the RC11 model.

Many challenges exist.
● Non-temporal stores break rel-acq synchronization.
● Ex86-consistency is incompatible with many compiler optimizations.
● Inline-assembly accesses cannot be modeled with RC11 access modes.

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.
● One can restore rel-acq synchronization through barriers, such as store fences.
● The scope of Ex86-consistency is limited to threads with inline assembly.

 (Compiler optimizations can be applied to C/C++ portions of code.)
● Inline-assembly accesses are modeled using new accesses modes.

The RC11Ex86 model enjoys many properties
● Extension of RC11 and Ex86
● Data-race freedom
● Correctness of compilation and compiler optimizations 26

Questions

27

