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Overview

Problem.
    Specify the semantics of inline x86 assembly in a concurrent setting with shared memory.

Motivation.
    Inline assembly allows one to insert
        snippets of x86 assembly in C/C++ code.

Applications of inline assembly include
Writing efficient code directly in x86 assembly●

Access to instructions that do not exist in C/C++●

Customizing call conventions●
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Challenge.
    Architecture (x86) and source language (C/C++) follow incompatible concurrency models.
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int src = 42, dst = 0;

// non-temporal store
asm volatile (
    "movnti %[src], %[dst]"
    : [dst] "=m" (dst)
    : [src] "r"  (src)
    : "memory");

assert(dst == 42);
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Introduction to RC11 and Ex86

x :=sc  1
y :=sc  1

T0 T1
a =sc  y
b =sc  x

rlx  screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
    x86 assembly.

T0 T1
a = y
b = x

RC11[Lahav et al.] is a model for C/C++.

x :=   1
y :=   1
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x :=rlx 1
y :=rel 1

T0 T1
a =acq y // 1
b =rlx x // 0

rlx  screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
    x86 assembly.

T0 T1
a = y // 1
b = x // 0

RC11[Lahav et al.] is a model for C/C++.

rel-acq pairs restore synchronization:
In x86, plain reads and writes follow TSO:
    Only write-read pairs can be reordered.
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Introduction to RC11 and Ex86

x :=rlx 1
y :=rel 1

T0 T1
a =acq y // 1
b =rlx x // 0

rlx  screl, acqna acqrel

atomics

Ex86 [Raad et al.] is a model for
    x86 assembly.

x :=   1
y :=nt 1

T0 T1
a = y // 1
b = x // 0

RC11[Lahav et al.] is a model for C/C++.

rel-acq pairs restore synchronization:
Non-temporal stores bypass the cache:
    They can be reordered with other writes.

a = 1  ⟹  b = 1 a = 1  ⟹  b = 1
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Consequence to C/C++ memory model: nt stores break rel-acq synchronization!

T1

a =acq y // 1

b =rlx x // 0

T0

asm{x :=nt 1}

y :=rel 1

Challenges:
● Relax RC11 in such a way that this behavior is allowed.
● Suggest how to restore synchronization (e.g. through x86’s store fences).

Challenges - Non-temporal stores

a = 1  ⟹  b = 1
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Challenges - Compiler optimizations

Compiler optimizations introduce behaviors that violate Ex86 consistency.

compile x := 1
y := 1

T0 T1
a = y // 1
b = x // 0

asm{x := 1}
y :=rlx 1

T0 T1
a =rlx y
b =rlx x
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compile x := 1
y := 1

T0 T1
b = x // 0
a = y // 1 allowed

Challenge: Enforce Ex86 consistency in a way that does not break optimizations.



Challenges - Access modes are unfit for inline assembly

It is not possible to model inline-assembly accesses using RC11 access modes:

 na      rlx      rel, acq      acqrel       sc

Weaker than plain read/writes.
Inline x86 read/writes cannot be 

optimized.

Apparently stronger.
(In fact, incomparable)

Challenges:
● Invent new access modes for inline-assembly accesses.
● Discover how the new access modes relate to the existing RC11 ones.
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RC11Ex86 - The extended model

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.

RC11Ex86 handles the three aforementioned challenges:

T1

a =acq y // 1

b =rlx x // 0

T0

asm{x :=nt 1}

y :=rel 1

T1

a =acq y // 1

b =rlx x // 0

T0

asm{x :=nt 1}

asm{sfence}

y :=rel 1

1. Non-temporal stores do not enforce synchronization
        unless followed by a (sufficiently strong) barrier.
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RC11Ex86 - The extended model

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.

RC11Ex86 handles the three aforementioned challenges:

2. Threads must use inline assembly to abide by Ex86 consistency.
        Compiler optimizations can be applied to C/C++ portions of code.

T1

asm{a = y}

b =rlx x     

T0

asm{x := 1}

y :=rlx 1

1. Non-temporal stores do not enforce synchronization
        unless followed by a (sufficiently strong) barrier.

c =rlx y

d =rlx x

T2
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RC11Ex86 - The extended model

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.

RC11Ex86 handles the three aforementioned challenges:

2. Threads must use inline assembly to abide by Ex86 consistency.
        Compiler optimizations can be applied to C/C++ portions of code.

1. Non-temporal stores do not enforce synchronization
        unless followed by a (sufficiently strong) barrier.

3. Introduction of new access modes for non-temporal stores (nt),
        plain reads/writes (tso), and store fences (sf).

rlx

 sc

rel, acq

na

nt

tso

sf

?
?

acqrel
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RC11Ex86 - The extended model

Non-temporal (nt) stores can be weaker than non-atomic (na) accesses.

ntna

T1
a =acq y // 1

if (a == 1)

  b =rlx x // 0

T0
asm{x :=nt 1}

y :=rel 1

T1

a =acq y // 1

if (a == 1)

  b =rlx x // 0

T0

x :=na 1

y :=rel 1
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RC11Ex86 - The extended model

Conversely, non-atomic (na) accesses can be weaker than non-temporal (nt) stores.

ntna

T1

a =rlx x // 42

T0

asm{x :=nt 1}

T1

a =rlx x // 42x :=na 1

T0

There are multiple reasons, we cite two:
● Programs fully written in inline assembly would not abide by x86 consistency.
● Inline assembly is not optimized like na accesses.

Why races on inline-assembly accesses are not UB?
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RC11Ex86 - The extended model

The semantics of sc accesses can be weaker than TSO.

sctso

T1
asm{a = y} // 1

b =rlx x    // 0

T0
asm{x := 1}

y :=rlx 1

T1
a =sc  y // 1

b =rlx x // 0

x :=sc  1

y :=rlx 1

T0
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RC11Ex86 - Properties

Extension of RC11. Programs without inline assembly have RC11 semantics:

Extension of Ex86. Programs fully written in inline assembly have Ex86 semantics:

Data-race freedom. Data-race-free programs have SC semantics:

P
RC11Ex86

= P
RC11

P  ∈ RC11    ⇒

asm{P}
RC11Ex86

= P
Ex86

P  ∈ Ex86    ⇒

P
RC11Ex86

= P
SC

P has sc-only races    ⇒
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RC11Ex86 - Properties

Moreover, sound compiler optimizations in RC11 are also sound in RC11Ex86;
    There is however one caveat: In RC11Ex86, sequentialization is not sound in general.

In x86, reading an external write enforces synchronization,
    whereas reading an internal write does not.

           // 1

             // 0

T1
asm{a = x

    b = y}    

T0
asm{x := 1} asm{y := 1

    mfence

    c = x}

T2

          

             // 0

            // 1

            // 0

T0 & T1
asm{x := 1

    a = x

    b = y}    

asm{y := 1

    mfence

    c = x}

T2

          

           // 0

We show correctness of compilation with respect to RC11Ex86 and Ex86. 

wrong
transformation 25
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Conclusion

Inline assembly is an important tool that is not handled by the RC11 model.

Many challenges exist.
● Non-temporal stores break rel-acq synchronization.
● Ex86-consistency is incompatible with many compiler optimizations.
● Inline-assembly accesses cannot be modeled with RC11 access modes.

We introduce RC11Ex86, an extended model for C/C++ with inline x86 assembly.
● One can restore rel-acq synchronization through barriers, such as store fences.
● The scope of Ex86-consistency is limited to threads with inline assembly.

    (Compiler optimizations can be applied to C/C++ portions of code.)
● Inline-assembly accesses are modeled using new accesses modes.

The RC11Ex86 model enjoys many properties
● Extension of RC11 and Ex86
● Data-race freedom
● Correctness of compilation and compiler optimizations 26



Questions
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