Proof of Programs with Effect Handlers

Paulo Emílio de Vilhena

16/12/2022

Alice & Irene

Alice is a student who is learning to program.

When she needs help, she can count on her teacher, Irene.

Alice: The function f divides the input list xs into a pair (l, r), where l contains the elements at even positions and r contains the elements at odd positions.

Alice: The function f divides the input list xs into a pair (l, r), where l contains the elements at even positions and r contains the elements at odd positions.

Why does f swap the lists l and r?

```
let rec f xs =
  match xs with
  [] ->
   ([], [])
  | x :: xs ->
   let l, r = f xs in
   (x :: r, l)
```


Why does f swap the lists l and r?


```
let rec f xs =
  match xs with
  | [] ->
    ([], [])
  | x :: xs ->
    let l, r = f xs in
    (x :: r, l)
```

Irene: Let us introduce the following notation.

evens(xs) ≜ "The elements of xs at even positions."
odds(xs) ≜ "The elements of xs at odd positions."

Irene: Now, look, the elements at *even* positions of x::xs consist of x plus the elements of xs at *odd* positions!

Irene: And the elements at *odd* positions of x::xs are the elements of xs at *even* positions!

evens(x :: xs) = x :: odds(xs) = x :: r
odds(x :: xs) = evens(xs) = l

Two objections

Although Irene's explanations were very helpful, Alice had two objections.

- Alice: There seems to be a kind of *circular reasoning*: When reasoning about the correctness of f, we assumed that the *recursive calls* to f behave correctly... what justifies this assumption?
- Alice: This program runs in a computer, whereas this explanation was written in the blackboard ... Why is it sound to reason about f independently of the machine?

Operational reasoning

Irene: When reasoning about **f** on the blackboard, we relied on *operational semantics*, a formalization of the meaning of programs that is *independent* of the machine!

Irene: With *op. semantics*, one can *reason* about the relation between a program e and its result v:

e →* ∨

Operational reasoning

Irene: For example, we can formally express what f does.

f xs \rightarrow * (evens(xs),odds(xs))

Irene: And we can prove this statement by *induction* on xs, thus justifying that the recursive calls to f behave correctly.

Alice decided to apply operational reasoning to study this implementation of *fast exponentiation*.

```
let pow x n =
    let r, b = ref 1, ref x in
    let rec step k =
        if k <> 0 then begin
            if k mod 2 <> 0 then
            r := !r * !b;
            b := !b * !b;
            step (k / 2)
        end
        in
        step n; !r
```

She started by writing what pow does:

pow x n $\rightarrow x^n$

Alice decided to apply operational reasoning to study this implementation of *fast exponentiation*.

```
let pow x n =
    let r, b = ref 1, ref x in
    let rec step k =
        if k <> 0 then begin
            if k mod 2 <> 0 then
            r := !r * !b;
            b := !b * !b;
            step (k / 2)
        end
        in
        step n; !r
```

She started by writing what pow does:

Irene: pow has an action on the *global state*.

 $(pow x n, \sigma) \rightarrow (x^n, \sigma[::=][::=])$

Alice decided to apply operational reasoning to study this implementation of *fast exponentiation*.

```
let pow x n =
    let r, b = ref 1, ref x in
    let rec step k =
        if k <> 0 then begin
            if k mod 2 <> 0 then
            r := !r * !b;
            b := !b * !b;
            step (k / 2)
        end
        in
        step n; !r
```

Alice then began to study the function step. However, Alice forgot to reason by *induction*... she would continuously unfold the definition of step at each recursive call.

```
(step k,_) \rightarrow * (step (k / 2),_) \rightarrow * (step (k / 4),_) \rightarrow *...
```


Irene: This example shows two limitations of operational reasoning.

```
let pow x n =
    let r, b = ref 1, ref x in
    let rec step k =
        if k <> 0 then begin
            if k mod 2 <> 0 then
            r := !r * !b;
        b := !b * !b;
        step (k / 2)
        end
        in
        step n; !r
```

Operational reasoning is *cumbersome*, one must reason about the *global state*.

Operational reasoning is *dangerous*, nothing stops one from indefinitely exploring the operational behavior of a given program.

Irene: Let me teach you a reasoning tool that overcomes both limitations!

Logical reasoning

Separation Logic comprises a specification language and a set of reasoning rules.

Specifications

{**P**} e {y.**Q**}

- **Precondition P** describes the state **before** executing e.
- **Postcondition Q** describes the state after executing e.

Reasoning rules

$$(\forall x. \{P\} f x \{y.Q\}) \Rightarrow \{P\} e \{y.Q\}$$

• General rules to compose and derive specifications. Taken as axioms or proven once and for all.

Convenience of logical reasoning

With Separation Logic,

one can reason about the functions pow and step with ease.

```
let pow x n =
    let r, b = ref 1, ref x in
    let rec step k =
        if k <> 0 then begin
            if k mod 2 <> 0 then
            r := !r * !b;
        b := !b * !b;
        step (k / 2)
        end
        in
        step n; !r
```

The specification of pow hides the state, pow is apparently pure:

$$\{n \ge 0\} \text{ pow } x n \{y. y = x^n\}$$

The specification of step (1) mentions the *relevant portions of memory* (2) includes *non-aliasing assumptions*.

The goal of this thesis

This is the end of Alice & Irene's story ... but a new chapter might be out soon!

Separation Logic also has limitations: it offers no way to reason about effect handlers.

The goal of this thesis is to extend *Separation Logic* with support for this feature.

Effect handlers

Effect handlers generalize *exception handlers*: whereas *raising* an exception *discards* the computation, *performing* an effect *suspends* the computation, which is reified as a *continuation*.

```
exception Division_by_zero
                                           effect Division_by_zero : int
let ( / ) x y =
                                           let ( / ) x y =
if y = 0 then raise Division_by_zero
                                            if y = 0 then perform Division_by_zero
else Int.div x y
                                            else Int.div x y
let =
                                           let =
  match 1 + (1 / 0) with
                                             match 1 + (1 / 0) with
    exception Division_by_zero -> 0
                                              effect Division_by_zero k ->
                                                continue k 0
    \vee \rightarrow \vee
                                               \vee - > \vee
-: int = 0
                                           -: int = 1
```

Effect handlers

Effect handlers come in *two* flavors:

- shallow handlers, which handle the first effect; and
- *deep handlers*, which handle all the effects.

```
effect E : unit
                                             effect E : unit
                                             let f () = perform E
let f () = perform E
let =
                                             let =
  shallow%match f(); f() with
                                                match f(); f() with
                                                  effect E k \rightarrow continue k ()
    effect E k -> continue k ()
                                                  \vee - > \vee
    v \rightarrow v
Exception: Unhandled
                                              -: unit = ()
```

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

• Control inversion.

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

The ability to *suspend* a computation and *resume* it at a later time is *extremely powerful*.

There are multiple important *applications* of effect handlers:

Contributions of this thesis

This thesis introduces *Hazel*, a *Separation Logic* for effect handlers.

Hazel

- allows specification and verification of handlers,
- preserves modular reasoning about the *state*,
- enforces new forms of modular reasoning: *handlee* (program that *performs* effects) vs *handler* (program that *handles* effects).

The *applicability* of Hazel is assessed by a number of interesting *case studies*:

- Control inversion
- Asynchronous computation
- Automatic differentiation

Contributions of this thesis

In the next part of the talk, I present *Hazel* and explain its application to *control inversion*.

Hazel

- allows specification and verification of handlers,
- preserves modular reasoning about the state,
- enforces new forms of modular reasoning: handlee (program that performs effects) vs handler (program that handles effects).

The *applicability* of Hazel is assessed by a number of interesting *case studies*:

- Control inversion
- Asynchronous computation
- Automatic differentiation

Control inversion

```
type iter = (int -> unit) -> unit
```

```
type sequence = unit -> head
and head = Nil | Cons of int * sequence
```

```
effect Yield : int -> unit
let yield x = perform (Yield x)
```

```
let invert (iter : iter) : sequence =
fun () ->
match iter yield with
| effect (Yield x) k ->
Cons (x, continue k)
| () ->
Nil
```

Control inversion

```
type iter = (int -> unit) -> unit
```

```
type sequence = unit -> head
and head = Nil | Cons of int * sequence
```

```
effect Yield : int -> unit
let yield x = perform (Yield x)
```

```
let invert (iter : iter) : sequence =
fun () ->
match iter yield with
    | effect (Yield x) k ->
        Cons (x, continue k)
    | () ->
        Nil
```

A higher-order iteration method is eager: it iterates an input function over the elements of a collection.

Control inversion

```
type iter = (int -> unit) -> unit
```

```
type sequence = unit -> head
and head = Nil | Cons of int * sequence
```

```
effect Yield : int -> unit
let yield x = perform (Yield x)
```

```
let invert (iter : iter) : sequence =
fun () ->
match iter yield with
    | effect (Yield x) k ->
        Cons (x, continue k)
    | () ->
        Nil
```

A lazy sequence is a thunk that when forced produces either a marker of its end or a pair of head and tail.
Control inversion

```
type iter = (int -> unit) -> unit
```

```
type sequence = unit -> head
and head = Nil | Cons of int * sequence
```

```
effect Yield : int -> unit
let yield x = perform (Yield x)
```

```
let invert (iter : iter) : sequence =
fun () ->
match iter yield with
| effect (Yield x) k ->
Cons (x, continue k)
| () ->
Nil
```

The function invert transforms an iteration method into a sequence.

From a high-level point of view, the function invert exploits an effect Yield to stop the iteration.

Teaser - Specification of invert in Hazel

The behavior of invert is concisely specified in Hazel:

```
∀iter xs.
    isIter(iter, xs) —* ewp (invert iter) (⊥) {k. isSeq(k, xs)}
```

- Precondition isIter(iter, xs) states that iter is an iteration method for the elements xs.
- Postcondition isSeq(k, xs) states that invert produces a sequence k that covers the same set of elements xs.
- Protocol ⊥ states that invert does not perform unhandled effects.

Remainder of this presentation

After the introduction of Hazel, we apply this tool to reason about invert and prove this spec:

```
∀iter xs.
    isIter(iter, xs) —* ewp (invert iter) (⊥) {k. isSeq(k, xs)}
```

In particular, we are going to introduce

- The notion of protocols
- The definition of isIter(iter, xs)
- The definition of isSeq(k, xs)

Overview of the Hazel project

Hazel is an extension of Iris.

Iris is a modern Separation Logic: standard logical connectives (∀, ∃, ⇒, ∧, ∨), separating conjunction (*), magic wand (—*), later modality (▷, for guarded recursion), persistently modality (□, to describe duplicable resources), update modality (▷, to support ghost state, a verification technique used to verify invert).

Formalization of the operational semantics of a subset of OCaml 5 containing

- (1) dynamically allocated mutable state,
- (2) effect handlers (both shallow and deep),
- (3) *global effect names* (encoded using binary sums), and(4) *one-shot continuations*.

Protocols

In traditional Separation Logic, a specification includes a *precondition P* and a *postcondition Q*:

P → wp e {y.*Q*}

The *key idea* of Hazel is to generalize specifications with a *protocol* Ψ , a description of the *effects* that a program might perform.

 $P \longrightarrow ewp e \langle \Psi \rangle \{y.Q\}$

"If the precondition P holds, then e can be safely executed.

This program either

(1) diverges, or

(2) terminates in a state where the postcondition Q holds, or

(3) performs an effect according to the protocol Ψ ."

 $\Psi ::= \bot \mid !x (v) \{P\}. ?y (w) \{Q\} \mid \Psi + \Psi$

- Empty protocol \perp
- Send/recv protocol !x (v) {P}. ?y (w) {Q}
- **Protocol sum** $\Psi_1 + \Psi_2$

 $\Psi ::= \bot \mid !x (v) \{P\}. ?y (w) \{Q\} \mid \Psi + \Psi$

• Empty protocol \perp

describes the *absence of effects*.

Examples.

ewp (ref 0) $\langle \perp \rangle$ {r. r \mapsto 0}

ewp (let r = ref 1 in $|r + |r| \langle \bot \rangle \{y, y = 2\}$

 $\Psi ::= \bot \mid !x (v) \{P\}. ?y (w) \{Q\} \mid \Psi + \Psi$

 Send/recv protocol !x (v) {P}. ?y (w) {Q} attaches a precondition P and a postcondition Q to performing an effect, suggesting to think of performing an effect as calling a function.

"A program is allowed to perform the effect u if there exists x such that u = v and P holds. For any y, the computation can be resumed with return value w, provided that Q holds."

 $\Psi ::= \bot \mid !x (v) \{P\}. ?y (w) \{Q\} \mid \Psi + \Psi$

• Send/recv protocol !x (v) {P}. ?y (w) {Q}

Examples.

effect Abort : unit -> 'a
ABORT = !_ (Abort ()) {True}. ?y (y) {False}
True __* ewp (perform (Abort ())) 〈ABORT〉 {_. False}

 $\Psi ::= \bot \mid !x (v) \{P\}. ?y (w) \{Q\} \mid \Psi + \Psi$

• Send/recv protocol !x (v) {P}. ?y (w) {Q}

Examples.

```
effect Get : unit -> int
GET = !x (Get ()) {currSt x}. ?_ (x) {currSt x}
currSt 1 -*
ewp (let x = perform (Get ()) in x + x) 〈GET〉
{y. y = 2 * currSt 1}
```

 $\Psi ::= \bot | !x (v) \{P\}. ?y (w) \{Q\} | \Psi + \Psi$

• **Protocol sum** $\Psi_1 + \Psi_2$

describes effects that abide by *either* Ψ_1 or Ψ_2 .

 $\Psi ::= \bot \mid !x (v) \{P\}. ?y (w) \{Q\} \mid \Psi + \Psi$

• **Protocol sum** $\Psi_1 + \Psi_2$

Examples.

```
GET = !x (Get ()) {currSt x}. ?_ ( x) {currSt x}
SET = !x y (Set y) {currSt x}. ?_ (()) {currSt y}
```

```
currSt 0 -*
ewp (let _ = perform (Set 1) in
    let x = perform (Get ()) in x + x) 〈GET + SET〉
    {y. y = 2 * currSt 1}
```

Reasoning rules

(Empty)

False

ewp (perform u) $\langle \perp \rangle \{Q\}$

(Sum)

ewp (perform u) $\langle \Psi_1 \rangle$ {Q} \forall ewp (perform u) $\langle \Psi_2 \rangle$ {Q}

ewp (perform u) $\langle \Psi_1 + \Psi_2 \rangle \{Q\}$

(Send/recv)

$$\exists x. u = v * P * (\forall y. Q \longrightarrow R(w))$$

(Empty)

False

ewp (perform u) $\langle \perp \rangle \{Q\}$

(Sum)

ewp (perform u) $\langle \Psi_1 \rangle$ {Q} \forall ewp (perform u) $\langle \Psi_2 \rangle$ {Q}

ewp (perform u) $\langle \Psi_1 + \Psi_2 \rangle \{Q\}$

(Send/recv)

$$\exists x. u = v * P * (\forall y. Q \longrightarrow R(w))$$

(Empty)

False

ewp (perform u) $\langle \perp \rangle \{Q\}$

(Sum)

ewp (perform u) $\langle \Psi_1 \rangle$ {Q} \forall ewp (perform u) $\langle \Psi_2 \rangle$ {Q}

ewp (perform u) $\langle \Psi_1 + \Psi_2 \rangle \{Q\}$

(Send/recv)

 $\exists x. u = v * P * (\forall y. Q \longrightarrow R(w))$

(Empty)

False

ewp (perform u) $\langle \perp \rangle \{Q\}$

(Sum)

ewp (perform u) $\langle \Psi_1 \rangle$ {Q} \vee ewp (perform u) $\langle \Psi_2 \rangle$ {Q}

ewp (perform u) $\langle \Psi_1 + \Psi_2 \rangle \{Q\}$

(Send/recv)

$$\exists x. u = v * P * (\forall y. Q \longrightarrow R(w))$$

(Empty)

False

ewp (perform u) $\langle \perp \rangle \{Q\}$

(Send/recv)

(Sum)

ewp (perform u) $\langle \Psi_1 \rangle$ {Q} \vee ewp (perform u) $\langle \Psi_2 \rangle$ {Q}

ewp (perform u) $\langle \Psi_1 + \Psi_2 \rangle \{Q\}$

"... is allowed to perform ... u if there exists x such that u = vand [the precondition] P holds ..."

 $\exists x. u = v * P * (\forall y. Q \longrightarrow R(w))$

(Empty)

False

ewp (perform u) $\langle \perp \rangle \{Q\}$

(Send/recv)

(Sum)

ewp (perform u) $\langle \Psi_1 \rangle$ {Q} \vee ewp (perform u) $\langle \Psi_2 \rangle$ {Q}

ewp (perform u) $\langle \Psi_1 + \Psi_2 \rangle \{Q\}$

"... for any y, the computation can be resumed with... w , provided that [the postcondition] Q holds."

$$\exists x. u = v * P * (\forall y. Q \rightarrow R(w))$$

Local reasoning about state

(Frame Rule)

 $P \longrightarrow ewp e \langle \Psi \rangle \{Q\}$

 $(P \star R) \longrightarrow ewp e \langle \Psi \rangle \{y. Q(y) \star R\}$

This is a crucial rule from *Separation Logic*.

It allows programs to be studied *separately* if they do not alter the same data structures.

Hazel preserves the frame rule thanks to the restriction to one-shot continuations.

Context-local reasoning

(Bind Rule)

ewp e $\langle \Psi \rangle$ {y. ewp N[y] $\langle \Psi \rangle$ {Q}} N is a neutral context

ewp N[e] $\langle \Psi \rangle$ {Q}

A neutral context contains no handlers.

This rule allows a program to be studied *in isolation* from the context under which it is evaluated.

(Shallow Handler)

ewp e $\langle \Psi_1 \rangle$ { Q_1 }

isShallowHandler $\langle \Psi_1 \rangle$ { Q_1 } (**h** | **r**) $\langle \Psi_2 \rangle$ { Q_2 }

ewp (shallow%match e with effect v k -> h v k | y -> r y) $\langle \Psi_2 \rangle$ { Q_2 }

This rule allows the *handlee* e to be studied *in isolation* from the *handler* that monitors its execution.

Intuitively, the protocol Ψ_1 is an abstraction boundary between handlee and handler: performing effects is akin to sending requests to a server, whose interface Ψ_1 the handler must implement.

The *shallow-handler judgment isShallowHandler* comprises the specifications of the *return branch* and the *effect branch*:

```
is Shallow Handler \langle \Psi_1 \rangle \{ Q_1 \} (h | r) \langle \Psi_2 \rangle \{ Q_2 \} \triangleq
       (\forall y. Q_1(y) \longrightarrow ewp (r y) \langle \Psi_2 \rangle \{Q_2\})
                                                                                                      (Return branch)
 ٨
        (∀v k.
                                                                                                      (Effect branch)
             ewp (perform v) \langle \Psi_1 \rangle {w.
                 ewp (continue k w) \langle \Psi_1 \rangle \{ Q_1 \}
             } —*
             ewp (h v k) \langle \Psi_2 \rangle {Q_2})
```

The shallow-handler judgment is ShallowHandler comprises the specifications of the return branch and the effect branch:

```
isShallowHandler \langle \Psi_1 \rangle {Q<sub>1</sub>} (h | r) \langle \Psi_2 \rangle {Q<sub>2</sub>} \triangleq
```

```
\forall y. Q_1(y) \longrightarrow ewp (r y) \langle \Psi_2 \rangle \{Q_2\}
```

```
٨
```

```
(∀v k.
    ewp (perform v) ⟨Ψ₁⟩ {w.
        ewp (continue k w) ⟨Ψ₁⟩ {Q₁}
    }
    -*
    ewp (h v k) ⟨Ψ₂⟩ {Q₂})
```

The *return branch* can assume that y satisfies the handlee's *postcondition Q1*.

The shallow-handler judgment is ShallowHandler comprises the specifications of the return branch and the effect branch:

```
isShallowHandler \langle \Psi_1 \rangle {Q<sub>1</sub>} (h | r) \langle \Psi_2 \rangle {Q<sub>2</sub>} \triangleq
(\forally. Q<sub>1</sub>(y) — * ewp (r y) \langle \Psi_2 \rangle {Q<sub>2</sub>})
```

٨

∀v k.

```
ewp (perform v) \langle \Psi_1 \rangle {w.

ewp (continue k w) \langle \Psi_1 \rangle {Q<sub>1</sub>}

} \xrightarrow{*}

ewp (h v k) \langle \Psi_2 \rangle {Q<sub>2</sub>}
```

The *effect branch* can assume that \lor was performed under a context (represented by) k according to the *protocol* Ψ_1 .

The shallow-handler judgment is ShallowHandler comprises the specifications of the return branch and the effect branch:

```
isShallowHandler \langle \Psi_1 \rangle {Q<sub>1</sub>} (h | r) \langle \Psi_2 \rangle {Q<sub>2</sub>} 
(\forally. Q<sub>1</sub>(y) — * ewp (r y) \langle \Psi_2 \rangle {Q<sub>2</sub>})
```

```
Λ
```

∀v k.

```
ewp (perform v) \langle \Psi_1 \rangle {w.

ewp (continue k w) \langle \Psi_1 \rangle {Q<sub>1</sub>}

} \rightarrow *

ewp (h \lor k) \langle \Psi_2 \rangle {Q<sub>2</sub>}
```

We identify the *permission* to resume the continuation.

The continuation k can be resumed with a return value w, if w is allowed by Ψ_1 .

One is then allowed to assume that the expression continue k w performs effects according to Ψ_1 and may terminate according to Q_1 .

(Deep Handler)

ewp e $\langle \Psi_1 \rangle$ {Q₁}

isDeepHandler $\langle \Psi_1 \rangle$ {Q₁} (**h** | **r**) $\langle \Psi_2 \rangle$ {Q₂}

ewp (match e with effect v k -> h v k | v -> r v) $\langle \Psi_2 \rangle$ { Q_2 }

The reasoning rule for *deep handlers* is similar to the rule for *shallow handlers*, the difference is hidden in the definition of the *deep-handler judgment isDeepHandler*.

The *deep-handler judgment isDeepHandler* is recursively defined, thus reflecting the recursive behavior of deep handlers.

```
isDeepHandler \langle \Psi_1 \rangle \{Q_1\} (h | r) \langle \Psi_2 \rangle \{Q_2\} \triangleq
(\forall y. Q_1(y) \longrightarrow ewp (r y) \langle \Psi_2 \rangle \{Q_2\})
```

```
٨
```

```
(∀v k.
```

```
ewp (perform v) \langle \Psi_1 \rangle {w. \forall \Psi' Q'.

\triangleright isDeepHandler \langle \Psi_1 \rangle {Q<sub>1</sub>} (h | r) \langle \Psi' \rangle {Q'} \rightarrow *

ewp (continue k w) \langle \Psi' \rangle {Q'}

} \rightarrow *

ewp (h v k) \langle \Psi_2 \rangle {Q<sub>2</sub>})
```

The deep-handler judgment isDeepHandler is recursively defined, thus reflecting the recursive behavior of deep handlers.

```
isDeepHandler \langle \Psi_1 \rangle {Q<sub>1</sub>} (h | r) \langle \Psi_2 \rangle {Q<sub>2</sub>} \triangleq
(∀y. Q<sub>1</sub>(y) — * ewp (r y) \langle \Psi_2 \rangle {Q<sub>2</sub>})
```

```
Λ
```

(∀v k.

```
ewp (perform v) \langle \Psi_1 \rangle {w. \forall \Psi' Q'. by a difference by a
```

To reason about the call to the continuation, one must *reestablish* the handler judgment, because the handler is *reinstalled*.

This new handler instance may abide by a *different protocol* Ψ' and by a *different postcondition* Q'.

Application of Hazel

Specification of invert

```
type iter = (int -> unit) -> unit
type sequence = unit -> head
and head = Nil | Cons of int * sequence
val invert : iter -> sequence
```

We wish to prove that invert meets the following specification:

∀iter xs.
 isIter(iter, xs) → ewp (invert iter) (⊥) {k. isSeq(k, xs)}

Definition of *isIter*

type iter = (int -> unit) -> unit

```
isIter(iter, xs) ≜
∀f I.
□ (∀us u vs. us ++ u :: vs = xs --*
I(us) --* wp (f u) {_. I(us ++ [u])}) --*
I([]) --* wp (iter f) {_. I(xs)}
```

The *abstract predicate I* is the *loop invariant*:

"If f can take one step, then iter can take xs steps."

Definition of *isIter*

type iter = (int -> unit) -> unit

```
isIter(iter, xs) ≜
∀f I Ψ.
□ (∀us u vs. us ++ u :: vs = xs →*
I(us) →* ewp (f u) ⟨Ψ⟩ {_. I(us ++ [u])}) →*
I([]) →* ewp (iter f) ⟨Ψ⟩ {_. I(xs)}
```

The abstract predicate I is the loop invariant.

The abstract protocol Ψ means that iter is effect-polymorphic:

- (1) iter *does not perform* effects, and
- (2) iter *does not intercept* the effects that f may throw.

Definition of *isSeq*

type sequence = unit -> head
and head = Nil | Cons of int * sequence

 $isSeq'(k, us, xs) \triangleq ewp k() \langle \perp \rangle \{y. isHead(y, us, xs)\}$

```
isHead(y, us, xs) \triangleq match y with
```

| Nil \Rightarrow us = xs

| Cons (u, k) ⇒ ∃vs. us ++ u :: vs = xs * ▷ isSeq'(k, us ++ [u], xs)
end

 $isSeq(k, xs) \triangleq isSeq'(k, [], xs)$

The protocol \perp indicates that a sequence *does not perform effects*.

Because the definition of *isSeq* ' does not include a *persistently modality*, the sequence k *is not* duplicable; it can be used *at most once*.

Key ideas

We covered the definitions, now we study the *key ideas* of the proof:

- 1. The introduction of a piece of *ghost state* to keep track of the elements already *seen*.
- 2. The introduction of the protocol describing the effect Yield.
Ghost state

```
effect Yield : int -> unit
let yield x = perform (Yield x)
```

The memory cell seen is part of the *ghost state*, which can be seen as a *fictional extension of the heap*.

Ghost state is a standard verification technique, usually presented as *history variables*.

Ghost state

The *ownership* of the *ghost location* seen is split between *handlee* and *handler*:

To update seen, *full ownership* is required, which can be recovered from the *two halves*:

seen \mapsto (½) us \rightarrow seen \mapsto (½) vs \rightarrow \Rightarrow seen \mapsto (us ++ [u]) \star us = vs

Ghost state

The *ownership* of the *ghost location* seen is split between *handlee* and *handler*:

"In the eyes of the handlee, the effect Yield u updates seen with u."

Verification of invert

After the allocation of seen, there comes the *main reasoning step*: the application of *Rule Deep Handler*.

Verification of invert

First proof obligation

```
seen \forall(%) [] \rightarrow ewp (iter yield) \langle YIELD \rangle {_. seen \forall(%) xs}
```

The first proof obligation follows from the hypothesis *isIter*(iter, *xs*).

Indeed, it suffices

- (1) to instantiate the loop invariant I(us) with seen \Rightarrow (3) us,
- (2) to instantiate the abstract protocol Ψ with $_{YIELD}$, and
- (2) to prove that the function yield "advances the invariant by one step".

seen \forall (%) us \rightarrow ewp (yield u) $\langle YIELD \rangle \{ \{ . \text{ seen } \forall (\%) (us ++ [u]) \} \}$

Verification of invert

Second proof obligation

```
seen \Rightarrow(%) [] \rightarrowisDeepHandler \langle YIELD \rangle {_. seen \Rightarrow(%) xs}(h \mid r)\langle \perp \rangle {y. isHead(y,[],xs)}
```

First, we generalize the assertion to reason about an arbitrary state of seen:

$$isDeepHandler \langle YIELD \rangle \{ _. seen \Rightarrow (\%) xs \}$$
$$H \triangleq \forall us. seen \Rightarrow (\%) us \longrightarrow (h | r) \\ \langle \bot \rangle \{y. isHead(y, us, xs) \}$$

The proof then follows by Löb induction (because a deep handler is recursively defined):

 \triangleright $H \rightarrow H$

In this talk, I presented Hazel a Separation Logic for effect handlers.

Hazel preserves *local* reasoning about *state* (*Frame Rule*) and *context-local* reasoning (*Bind Rule*)

Hazel introduces the notion of *protocols*, which allows *local* reasoning about *effects*.

Hazel is *successfully* applied to the study of *control inversion*.

Several contributions have not been discussed today...

```
Maze, a Separation Logic for handlers with multi-shot continuations.
```

Maze is applied to several interesting *case studies*, including *callcc* and Filinski's shift/reset.

Several contributions have not been discussed today...

```
Maze, a Separation Logic for handlers with multi-shot continuations.
```

Maze is applied to several interesting *case studies*, including *callcc* and Filinski's shift/reset.

Tes, a type system for effect handlers and dynamic effect names.

Tes's strong type soundness follows by the semantic approach, which bridges type systems to Separation Logic.

Why multi-shot continuations break the frame rule?

The function f *exits twice*:

in *the first time* it terminates, the assertion **b** \Rightarrow 0 holds, but, in *the second time* it terminates, this assertion no longer holds.

Contributions of Tes

Aliasing challenge: effect names may have aliases.

The literature proposes *two solutions* to address the *aliasing challenge*:

(1) *Effect coercions*;

(2) Dynamic allocation of effect labels + restriction to lexically scoped handlers.

Tes considers the *dynamic allocation of effect labels* as a construct on its own; a *lexically scoped handler* can be expressed as *derived construct*.

```
effect Not_found : 'a
let find f xs =
   let effect Found : int -> 'a in
   match
    List.iter (fun x ->
        if f x then perform Found x) xs
   with
    | effect (Found x) _ -> x
    | () -> perform Not_found
```

```
In Tes, the type of find
(1) does not mention local effects names,
(2) includes non-aliasing assumptions (Not_found ≠ θ).
```

```
∀θ. (int -{θ}-> bool) ->
    int list -{Not_found.θ}->
        int
```

Summary of Maze

A weakest precondition assertion in Maze assumes the same shape as in Hazel:

 $P \rightarrow \text{ewp} \in \langle \Psi \rangle \{y.Q\}$

Moreover, Maze preserves most of Hazel's reasoning rules with the exception of

- 1. The *frame rule*, which is *unsound* in Maze;
- 2. The handler rules,

which is adapted to allow reasoning about multiple invocations of the continuation; and

3. The rule for *performing effects*, which includes a *persistently modality*, justifying that the *handlee* can be resumed multiple times.

(Send/recv)

$$\exists x. \ u = v * P * \Box(\forall y. \ Q \longrightarrow R(w))$$

ewp (perform (u)) $\langle !x (v) \{P\}$. ?y (w) $\{Q\}\rangle \{R\}$

Reasoning Rules for callcc

persistent	(isCont	k	Φ)	
------------	---------	---	----------	--

isCont k $\Phi = \Box(\forall w. \Phi'(w) \rightarrow \Phi(w))$

isCont k ⊄'

isCont k $\phi \longrightarrow wp \in \{\phi\}$	isCont k Φ	$\Phi(w)$
wp (callcc k. e) $\{ \phi \}$	wp (throw k w)	[False}

wp e { ϕ } \triangleq ewp e $\langle CT \rangle$ { ϕ }

Reasoning Rules for Filinski's shift/reset

wp e $\langle \text{Some } \Phi \rangle \{ \Phi \}$	$\Box(\forall w. \Phi'(w) \longrightarrow wp (k w) \langle \rangle \{\Phi\}) \longrightarrow wp e \langle Some \Phi \rangle \{\Phi'\}$
wp (reset e) $\langle \rangle \{ \phi \}$	wp (shift k. e) (Some Φ { Φ' }

isMetaCont opt $\triangleq \exists k. mc \mapsto k * inMetaCont opt k$ inMetaCont (Some Φ) k $\triangleq \forall y. \Phi(y) \xrightarrow{} mc \mapsto _ \xrightarrow{} ewp (k y) \langle CT \rangle \{_.False\}$ inMetaCont None $_ \triangleq True$

Syntax of protocols

 $\Psi ::= \bot \mid !x (v) \{P\}. ?y (w) \{Q\} \mid \Psi + \Psi$

• Send/recv protocol !x (v) {P}. ?y (w) {Q}

Remark.

Hazel's *send/recv protocols* are inspired by *Actris's protocols* [Hinrichsen et al, 20], used to describe the interaction between actors in *message-passing concurrency*.

A Hazel *send/recv protocol* is a coinductive Actris protocol defined as the *repetition* of a send/recv pair.

Control inversion using callcc

```
type iter = (int -> unit) -> unit
type sequence = unit -> head
and head = Nil | Cons of int * sequence
let invert (iter : iter) : sequence =
  fun () -> callcc kc.
    let r = ref kc in
    let yield u = callcc kp.
      throw !r (Cons (u, fun () ->
        callcc kc. r := kc; throw kp ()))
    in
    iter yield; throw !r Nil
```

```
isIterCC(iter,xs) ≜
    ∀f I.
     \Box (\forall us \ u \ vs. \ us \ ++ \ u \ :: \ vs \ = \ xs \ -- *
          I(us) \longrightarrow ewp (f u) \langle CT \rangle \{ ... I(us++[u]) \}
          ) —*
     I([]) \longrightarrow ewp (iter f) \langle CT \rangle \{ I(xs) \}
isSeqCC'(k, us, xs) ≜
     ewp k() \langle CT \rangle {y. isHeadCC(y, us, xs)}
isHeadCC(y, us, xs) \triangleq ...
isSeqCC(k, xs) \triangleq isSeqCC'(k, [], xs)
∀iter xs.
   isIterCC(iter, xs) —*
   ewp (invert iter) \langle CT \rangle {k. isSeqCC(k, xs)}
```