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Alice & Irene

Alice is a student who is learning to program.

When she needs help,
    she can count on her teacher, Irene.



What does the function f do?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)



f [0; 1; 2];;

f [0; 1; 2; 3];;

f [0; 1; 2; 3; 4];;

What does the function f do?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)



f [0; 1; 2];;
([0; 2], [1])

f [0; 1; 2; 3];;

f [0; 1; 2; 3; 4];;

What does the function f do?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)



f [0; 1; 2];;
([0; 2], [1])

f [0; 1; 2; 3];;
([0; 2], [1; 3])

f [0; 1; 2; 3; 4];;

What does the function f do?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)



f [0; 1; 2];;
([0; 2], [1])

f [0; 1; 2; 3];;
([0; 2], [1; 3])

f [0; 1; 2; 3; 4];;
([0; 2; 4], [1; 3])

What does the function f do?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)



f [0; 1; 2];;
([0; 2], [1])

f [0; 1; 2; 3];;
([0; 2], [1; 3])

f [0; 1; 2; 3; 4];;
([0; 2; 4], [1; 3])

What does the function f do?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)

Alice: The function f divides the input list xs into a pair (l, r),
where l contains the elements at even positions

and r contains the elements at odd positions.



f [0; 1; 2];;
([0; 2], [1])

f [0; 1; 2; 3];;
([0; 2], [1; 3])

f [0; 1; 2; 3; 4];;
([0; 2; 4], [1; 3])

What does the function f do?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)

Alice: The function f divides the input list xs into a pair (l, r),
where l contains the elements at even positions

and r contains the elements at odd positions.



Why does f swap the lists l and r?

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)



Why does f swap the lists l and r?

evens(xs) ≜ "The elements of xs at even positions."

 odds(xs) ≜ "The elements of xs at odd positions."

Irene: Let us introduce the following notation.

evens(x :: xs) = x :: odds(xs) = x :: r

 odds(x :: xs) =     evens(xs) =      l

Irene: Now, look, the elements at even positions of x::xs
    consist of x plus the elements of xs at odd positions!

Irene: And the elements at odd positions of x::xs are
    the elements of xs at even positions!

 let rec f xs =
   match xs with
   | [] ->
      ([], [])
   | x :: xs ->
      let l, r = f xs in
      (x :: r, l)



Two objections

Although Irene's explanations were very helpful, Alice had two objections.

● Alice: This program runs in a computer,
               whereas this explanation was written in the blackboard …
                   Why is it sound to reason about f independently of the machine?

● Alice: There seems to be a kind of circular reasoning:
    When reasoning about the correctness of f,
        we assumed that the recursive calls to f behave correctly… what justifies this assumption?



Operational reasoning

Irene: When reasoning about f on the blackboard, we relied on operational semantics,
    a formalization of the meaning of programs that is independent of the machine!

Irene: With op. semantics, one can reason about the relation between a program e and its result v:

e →* v



Operational reasoning

f xs →* (evens(xs),odds(xs))

Irene: For example, we can formally express what f does.

Irene: And we can prove this statement by induction on xs,
    thus justifying that the recursive calls to f behave correctly.



She started by writing what pow does:

(pow x n, σ)  →* (xn, σ[_:=_][_:=_])

Limitations of operational reasoning

 let pow x n =
   let r, b = ref 1, ref x in
   let rec step k =
     if k <> 0 then begin
       if k mod 2 <> 0 then
         r := !r * !b;
       b := !b * !b;
       step (k / 2)
     end
   in
   step n; !r

Alice decided to apply operational reasoning to study this implementation of fast exponentiation.



She started by writing what pow does:

(pow x n, σ)  →* (xn, σ[_:=_][_:=_])

Limitations of operational reasoning

Alice decided to apply operational reasoning to study this implementation of fast exponentiation.

(pow x n, σ)  →* (xn, σ[_:=_][_:=_])

Irene: pow has an action on the global state. 

 let pow x n =
   let r, b = ref 1, ref x in
   let rec step k =
     if k <> 0 then begin
       if k mod 2 <> 0 then
         r := !r * !b;
       b := !b * !b;
       step (k / 2)
     end
   in
   step n; !r



Alice then began to study the function step.
    However, Alice forgot to reason by induction…
        she would continuously unfold the
        definition of step at each recursive call.

Limitations of operational reasoning

(step k,_) →* (step (k / 2),_) →* (step (k / 4),_) →*… 

Alice decided to apply operational reasoning to study this implementation of fast exponentiation.

 let pow x n =
   let r, b = ref 1, ref x in
   let rec step k =
     if k <> 0 then begin
       if k mod 2 <> 0 then
         r := !r * !b;
       b := !b * !b;
       step (k / 2)
     end
   in
   step n; !r



Limitations of operational reasoning

 let pow x n =
   let r, b = ref 1, ref x in
   let rec step k =
     if k <> 0 then begin
       if k mod 2 <> 0 then
         r := !r * !b;
       b := !b * !b;
       step (k / 2)
     end
   in
   step n; !r

Operational reasoning is cumbersome,
    one must reason about the global state.

Irene: This example shows two limitations of operational reasoning.

Operational reasoning is dangerous,
    nothing stops one from indefinitely exploring
    the operational behavior of a given program.

Irene: Let me teach you a reasoning tool
    that overcomes both limitations!



Logical reasoning

{P} e {y.Q}

Specifications Reasoning rules

Separation Logic comprises a specification language and a set of reasoning rules.

● Precondition P
    describes the state before executing e.

● Postcondition Q
    describes the state after executing e.

● General rules to compose and derive specifications.
    Taken as axioms or proven once and for all.

(∀x. {P} f x {y.Q}) ⇒ {P} e {y.Q}

{P} let rec f x = e in f x {y.Q}



The specification of pow hides the state,
    pow is apparently pure:

Convenience of logical reasoning

{ r ↦ a * b ↦ x }
  step k
{_. r ↦ (a⋅xk) * b ↦ _ }

{n >= 0} pow x n {y. y = xn}

The specification of step
    (1) mentions the relevant portions of memory
    (2) includes non-aliasing assumptions.

 let pow x n =
   let r, b = ref 1, ref x in
   let rec step k =
     if k <> 0 then begin
       if k mod 2 <> 0 then
         r := !r * !b;
       b := !b * !b;
       step (k / 2)
     end
   in
   step n; !r

With Separation Logic,
    one can reason about the functions pow  and step with ease.



The goal of this thesis is to extend Separation Logic with support for this feature.

The goal of this thesis

Separation Logic also has limitations: it offers no way to reason about effect handlers.

This is the end of Alice & Irene's story … but a new chapter might be out soon!



exception Division_by_zero
let ( / ) x y =
 if y = 0 then raise Division_by_zero
 else Int.div x y
let _ =
  match 1 + (1 / 0) with
  | exception Division_by_zero -> 0
  | y -> y

effect Division_by_zero : int
let ( / ) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y
let _ =
  match 1 + (1 / 0) with
  | effect Division_by_zero k ->
     continue k 0
  | y -> y

Effect handlers

-: int = 0 -: int = 1

exception Division_by_zero
let ( / ) x y =
 if y = 0 then raise Division_by_zero
 else Int.div x y
let _ =
  match 1 + (1 / 0) with
  | exception Division_by_zero -> 0
  | y -> y

effect Division_by_zero : int
let ( / ) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y
let _ =
  match 1 + (1 / 0) with
  | effect Division_by_zero k ->
     continue k 0
  | y -> y

Effect handlers generalize exception handlers:
      whereas raising an exception discards the computation,
      performing an effect suspends the computation, which is reified as a continuation.



effect E : unit
let f () = perform E

let _ =
  shallow%match f(); f() with
  | effect E k -> continue k ()
  | y -> y

effect E : unit
let f () = perform E

let _ =
  match f(); f() with
  | effect E k -> continue k ()
  | y -> y

Effect handlers

Exception: Unhandled -: unit = ()

effect E : unit
let f () = perform E

let _ =
  shallow%match f(); f() with
  | effect E k -> continue k ()
  | y -> y

effect E : unit
let f () = perform E

let _ =
  match f(); f() with
  | effect E k -> continue k ()
  | y -> y

Effect handlers come in two flavors:
● shallow handlers, which handle the first effect; and
● deep handlers, which handle all the effects.



The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

● Asynchronous computation.

● Control inversion.



The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

● Asynchronous computation.

x0 x1 x2● Control inversion.



x0 x1 x2

The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

● Asynchronous computation.

x0 x1 x2● Control inversion.



perform (Yield x0)

x0 x1 x2

The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

● Asynchronous computation.

x0 x1 x2● Control inversion.



perform (Yield x1)

x0 x1 x2

The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

● Asynchronous computation.

x0 x1 x2● Control inversion.



perform (Yield x2)

x0 x1 x2

The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

● Asynchronous computation.

x0 x1 x2● Control inversion.



● Asynchronous computation.
perform (Await p2)

perform (Await p1)

work in progress …

p0

p1

p2

x0 x1 x2● Control inversion.

The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

x0 x1 x2



● Asynchronous computation.
perform (Await p2)

perform (Await p1)

p0

p1

p2

x0 x1 x2● Control inversion.

The ability to suspend a computation and resume it at a later time is extremely powerful.

There are multiple important applications of effect handlers:

Applications of effect handlers

work in progress …p3

perform (Await p3)

x0 x1 x2



Contributions of this thesis

This thesis introduces Hazel, a Separation Logic for effect handlers.

Hazel

Control 
inversion

Asynchronous
computation

Automatic
differentiation

Hazel
● allows specification and verification of handlers,

● preserves modular reasoning about the state,

● enforces new forms of modular reasoning:
    handlee (program that performs effects) vs
    handler (program that handles effects).

The applicability of Hazel is assessed by
    a number of interesting case studies:

● Control inversion

● Asynchronous computation

● Automatic differentiation



Contributions of this thesis

In the next part of the talk, I present Hazel and explain its application to control inversion.

Hazel

Control 
inversion

Asynchronous
computation

Automatic
differentiation

Hazel
● allows specification and verification of handlers,

● preserves modular reasoning about the state,

● enforces new forms of modular reasoning:
    handlee (program that performs effects) vs
    handler (program that handles effects).

The applicability of Hazel is assessed by
    a number of interesting case studies:

● Control inversion

● Asynchronous computation

● Automatic differentiation



 type iter = (int -> unit) -> unit

 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
   fun () ->
     match iter yield with
     | effect (Yield x) k ->
         Cons (x, continue k)
     | () ->
         Nil

Control inversion



 type iter = (int -> unit) -> unit 

 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
   fun () ->
     match iter yield with
     | effect (Yield x) k ->
         Cons (x, continue k)
     | () ->
         Nil

A higher-order iteration method is eager:
    it iterates an input function over the
    elements of a collection.

Control inversion



 type iter = (int -> unit) -> unit

 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
   fun () ->
     match iter yield with
     | effect (Yield x) k ->
         Cons (x, continue k)
     | () ->
         Nil

A lazy sequence is a thunk that when
    forced produces either a marker of its
    end or a pair of head and tail.

Control inversion



 type iter = (int -> unit) -> unit

 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
   fun () ->
     match iter yield with
     | effect (Yield x) k ->
         Cons (x, continue k)
     | () ->
         Nil

The function invert transforms
    an  iteration method into a sequence.

From a high-level point of view,
    the function invert exploits an
    effect Yield to stop the iteration.

Control inversion



Teaser - Specification of invert in Hazel

∀iter xs.
    isIter(iter, xs)    ewp (invert iter)〈⊥〉{k. isSeq(k, xs)}

The behavior of invert is concisely specified in Hazel:

● Precondition isIter(iter, xs)
    states that iter is an iteration method for the elements xs.

● Postcondition isSeq(k, xs)
    states that invert produces a sequence k that covers the same set of elements xs.

● Protocol ⊥
    states that invert does not perform unhandled effects.



Remainder of this presentation

∀iter xs.
    isIter(iter, xs)    ewp (invert iter)〈⊥〉{k. isSeq(k, xs)}

After the introduction of Hazel, we apply this tool to reason about invert and prove this spec:

In particular, we are going to introduce

● The notion of protocols

● The definition of isIter(iter, xs)

● The definition of isSeq(k, xs)



Hazel



Overview of the Hazel project

Hazel is an extension of Iris.

The Coq Proof Assistant

Hazel

Iris

OCaml 5 
(subset)

Formalization of the operational semantics of a subset of
    OCaml 5 containing
    (1) dynamically allocated mutable state,
    (2) effect handlers (both shallow and deep),
    (3) global effect names (encoded using binary sums), and
    (4) one-shot continuations.

Iris is a modern Separation Logic:
    standard logical connectives (∀, ∃, ⇒, ⋀, ∨),
    separating conjunction (*),
    magic wand (        ),
    later modality (▷,for guarded recursion),
    persistently modality (□, to describe duplicable resources),
    update modality (    , to support ghost state,
        a verification technique used to verify invert).

⇒



Protocols

In traditional Separation Logic,
    a specification includes a precondition P and a postcondition Q:

P    wp e {y.Q}

The key idea of Hazel is to generalize specifications with a protocol Ψ,
    a description of the effects that a program might perform.

P    ewp e〈Ψ 〉{y.Q}

"If the precondition P holds, then e can be safely executed.
    This program either
      (1) diverges, or
      (2) terminates in a state where the postcondition Q holds, or
      (3) performs an effect according to the protocol Ψ."



Syntax of protocols

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

● Protocol sum  Ψ1 + Ψ2

● Empty protocol  ⊥ 



ewp (ref 0)〈⊥〉{r. r ↦ 0}

ewp (let r = ref 1 in !r + !r)〈⊥〉{y. y = 2}

Syntax of protocols

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

● Empty protocol  ⊥

    describes the absence of effects. 

Examples.



Syntax of protocols

● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

    attaches a precondition P and a postcondition Q to performing an effect,

    suggesting to think of performing an effect as calling a function.

"A program  is allowed to perform the effect  u  if there exists  x  such that  u = v  and  P  holds.
    For any  y  , the computation can be resumed with return value  w  , provided that  Q  holds."

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ



effect Abort : unit -> 'a

Syntax of protocols

● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

Examples.

True    ewp (perform (Abort ()))〈ABORT〉{_. False}

ABORT = !_ (Abort ()) {True}. ?y (y) {False}

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ



Syntax of protocols

● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

Examples.

GET = !x (Get ()) {currSt x}. ?_ (x) {currSt x}

currSt 1  
  ewp (let x = perform (Get ()) in x + x)〈GET〉
                                          {y. y = 2 * currSt 1}

effect Get : unit -> int

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ



Syntax of protocols

● Protocol sum  Ψ1 + Ψ2

    describes effects that abide by either Ψ1 or Ψ2.

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ



Syntax of protocols

● Protocol sum  Ψ1 + Ψ2

currSt 0  
  ewp (let _ = perform (Set  1) in
       let x = perform (Get ()) in x + x)〈GET + SET〉
                                          {y. y = 2 * currSt 1}

GET = !x   (Get ()) {currSt x}. ?_ ( x) {currSt x}
SET = !x y (Set  y) {currSt x}. ?_ (()) {currSt y}

Examples.

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ



Reasoning rules



ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈⊥〉{Q}

False

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Empty)

(Sum)

∃x. u = v * P * (∀y. Q    R(w))

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

Reasoning about effects



ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈⊥〉{Q}

False

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Empty)

(Sum)

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

Reasoning about effects

∃x. u = v * P * (∀y. Q    R(w))



ewp (perform u)〈⊥〉{Q}

False

(Empty)

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

Reasoning about effects

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Sum)

∃x. u = v * P * (∀y. Q    R(w))



ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

Reasoning about effects

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Sum)

ewp (perform u)〈⊥〉{Q}

(Empty)

False

∃x. u = v * P * (∀y. Q    R(w))



∃x. u = v * P * (∀y. Q    R(w))

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

Reasoning about effects

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Sum)

ewp (perform u)〈⊥〉{Q}

(Empty)

False

"... is allowed to perform … u
if there exists  x  such that  u = v
and [the precondition]  P  holds …"



ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

Reasoning about effects

(Sum)

ewp (perform u)〈⊥〉{Q}

(Empty)

False

∃x. u = v * P * (∀y. Q    R(w))

"... for any  y , the computation
can be resumed with…  w , provided
that [the postcondition]  Q  holds."

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}



(Frame Rule)

P    ewp e〈Ψ〉{Q}

(P * R)    ewp e〈Ψ〉{y. Q(y) * R}

Local reasoning about state

This is a crucial rule from Separation Logic.

It allows programs to be studied separately
    if they do not alter the same data structures.

Hazel preserves the frame rule
    thanks to the restriction to one-shot continuations.



Context-local reasoning

(Bind Rule)

ewp e〈Ψ〉{y. ewp N[y]〈Ψ〉{Q}}

ewp N[e]〈Ψ〉{Q}

N is a neutral context

A neutral context contains no handlers.

This rule allows a program to be studied in isolation
    from the context under which it is evaluated.



(Shallow Handler)

ewp e〈Ψ1〉{Q1}

ewp (shallow%match e with effect v k -> h v k | y -> r y)〈Ψ2〉{Q2}

isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2}

Reasoning about handlers

This rule allows the handlee e to be studied in isolation
    from the handler that monitors its execution.

Intuitively, the protocol Ψ1 is an abstraction boundary between handlee and handler:
    performing effects is akin to sending requests to a server,
    whose interface Ψ1 the handler must implement.



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

(∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

(Return branch)

(Effect branch)

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:

Reasoning about handlers



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

 ∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2} 

(∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

Reasoning about handlers

The return branch can assume that y
    satisfies the handlee's postcondition Q1.

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

 ∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2}

 ⋀ 

Reasoning about handlers

The effect branch can assume that  v was
    performed under a context (represented by) k
    according to the protocol Ψ1.

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

 ∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2}

 ⋀ 

Reasoning about handlers

We identify the permission
    to resume the continuation.

The continuation k can be resumed with
    a return value w, if w is allowed by Ψ1.

One is then allowed to assume that
    the expression continue k w
    performs effects according to Ψ1

    and may terminate according to Q1.

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:



(Deep Handler)

ewp e〈Ψ1〉{Q1}

ewp (match e with effect v k -> h v k | v -> r v)〈Ψ2〉{Q2}

isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2}

Reasoning about handlers

The reasoning rule for deep handlers is similar to the rule for shallow handlers,
    the difference is hidden in the definition of the deep-handler judgment isDeepHandler.



isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

(∀v k.

   ewp (perform v)〈Ψ1〉{w. ∀Ψ' Q'.

     ▷ isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ'〉{Q'}   

     ewp (continue k w)〈Ψ'〉{Q'}

   }   

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

The deep-handler judgment isDeepHandler is recursively defined,
    thus reflecting the recursive behavior of deep handlers.

Reasoning about handlers



isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

(∀v k.

   ewp (perform v)〈Ψ1〉{w. ∀Ψ' Q'.

     ▷ isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ'〉{Q'}   

     ewp (continue k w)〈Ψ'〉{Q'}

   }   

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

The deep-handler judgment isDeepHandler is recursively defined,
    thus reflecting the recursive behavior of deep handlers.

Reasoning about handlers

To reason about the call to the continuation,
    one must reestablish the handler 
judgment,
    because the handler is reinstalled.

This new handler instance may abide
    by a different protocol Ψ' and
    by a different postcondition Q'.



Application of Hazel



 type iter = (int -> unit) -> unit

 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

 val invert : iter -> sequence

We wish to prove that invert meets the following specification:

Specification of invert

∀iter xs.
    isIter(iter, xs)    ewp (invert iter)〈⊥〉{k. isSeq(k, xs)}



 type iter = (int -> unit) -> unit

isIter(iter, xs) ≜

   ∀f I.

    □ (∀us u vs. us ++ u :: vs = xs

       I(us)    wp (f u) {_. I(us ++ [u])})

    I([])    wp (iter f) {_. I(xs)}

The abstract predicate I is the loop invariant:

    "If f can take one step, then iter can take xs steps."

Definition of isIter 



 type iter = (int -> unit) -> unit

isIter(iter, xs) ≜

   ∀f I Ψ.

    □ (∀us u vs. us ++ u :: vs = xs

       I(us)    ewp (f u)〈Ψ〉{_. I(us ++ [u])})

    I([])    ewp (iter f)〈Ψ〉{_. I(xs)}

Definition of isIter 

The abstract protocol Ψ  means that iter is effect-polymorphic:

    (1) iter does not perform effects, and

    (2) iter does not intercept the effects that f may throw.

The abstract predicate I is the loop invariant.



 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

isSeq'(k, us, xs) ≜ ewp k()〈⊥〉{y. isHead(y, us, xs)}

isHead(y, us, xs) ≜ match y with

  | Nil         ⇒      us = xs

  | Cons (u, k) ⇒ ∃vs. us ++ u :: vs = xs  *  ▷ isSeq'(k, us ++ [u], xs)

  end

isSeq(k, xs) ≜ isSeq'(k, [], xs)

The protocol ⊥ indicates that a sequence does not perform effects.

Definition of isSeq 

Because the definition of isSeq' does not include a persistently modality,
    the sequence k is not duplicable; it can be used at most once.



 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
   match iter yield with
   | effect (Yield x) k -> Cons (x, continue k)
   | ()                 -> Empty

We covered the definitions, now we study the key ideas of the proof:

1. The introduction of a piece of ghost state to keep track of the elements already seen.

2. The introduction of the protocol describing the effect Yield.

Key ideas



 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
   let ghost seen = ref [] in
   match iter yield with
   | effect (Yield x) k ->
       seen := !seen @ [x];
       Cons (x, continue k)
   | ()                 ->
       Empty

Ghost state

The memory cell seen is part of the ghost state,
    which can be seen as a fictional extension of the heap.

Ghost state is a standard verification technique,
    usually presented as history variables.



Ghost state

seen ↦ []

seen ↦(½) []

Handlee

seen ↦(½) []

Handler

seen ↦(½) us      seen ↦(½) vs         seen ↦ (us ++ [u])  *  us = vs

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
   let ghost seen = ref [] in
   match iter yield with
   | effect (Yield x) k ->
       seen := !seen @ [x];
       Cons (x, continue k)
   | ()                 ->
       Empty

The ownership of the ghost location seen is split
    between handlee and handler:

To update seen, full ownership is required, which can be recovered from the two halves:

⇒



Ghost state

seen ↦ []

seen ↦(½) []

Handlee

seen ↦(½) []

Handler

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
   let ghost seen = ref [] in
   match iter yield with
   | effect (Yield x) k ->
       seen := !seen @ [x];
       Cons (x, continue k)
   | ()                 ->
       Empty

The ownership of the ghost location seen is split
    between handlee and handler:

"In the eyes of the handlee, the effect Yield u updates seen with u."

YIELD = !us u vs (Yield u) { seen ↦(½)  us         *
                             us ++ u :: vs = xs    }.
        ?_       (())      { seen ↦(½) (us ++ [u]) }



Verification of invert

seen ↦(½) []
ewp (iter yield)〈YIELD〉{_.
  seen ↦(½) xs}

  seen ↦ []
  ewp (match iter yield with
       | effect (Yield x) k -> h x k
       |() -> r ()) 〈⊥〉{y. isHead(y,[],xs)}

seen ↦(½) []
isDeepHandler
 〈YIELD〉{_. seen ↦(½) xs}
    (h | r)
 〈⊥〉{y. isHead(y,[],xs)}

(Deep Handler)

After the allocation of seen, there comes the main reasoning step:
    the application of Rule Deep Handler.



First proof obligation

The first proof obligation follows from the hypothesis isIter(iter, xs).

Verification of invert

seen ↦(½) []     ewp (iter yield)〈YIELD〉{_. seen ↦(½) xs}

Indeed, it suffices

    (1) to instantiate the loop invariant  I(us)  with  seen ↦(½) us,

    (2) to instantiate the abstract protocol  Ψ  with  YIELD  , and

    (2) to prove that the function  yield  "advances the invariant by one step".

  seen ↦(½) us      ewp (yield u)〈YIELD〉{_. seen ↦(½) (us ++ [u])}



Second proof obligation

isDeepHandler〈YIELD〉{_. seen ↦(½) xs}
                (h | r)
             〈⊥〉{y. isHead(y,[],xs)}
 

First, we generalize the assertion to reason about an arbitrary state of  seen:

The proof then follows by Löb induction (because a deep handler is recursively defined):

▷ H    H

Verification of invert

seen ↦(½) []

isDeepHandler〈YIELD〉{_. seen ↦(½) xs}
                (h | r)
             〈⊥〉{y. isHead(y,us,xs)}

H ≜ ∀us. seen ↦(½) us



Conclusion



Conclusion

Hazel

Control 
inversion

Asynchronous
computation

Automatic
differentiation

In this talk, I presented Hazel
    a Separation Logic for effect handlers.

Hazel preserves local reasoning about state (Frame Rule)
    and context-local reasoning (Bind Rule)

Hazel is successfully applied to the study of control inversion.

Hazel introduces the notion of protocols,
    which allows local reasoning about effects.



Conclusion

Several contributions have not been discussed today…

Maze

SAT
solver

callcc

Filinski's
shift & reset

Control 
inversion

 Maze, a Separation Logic
    for handlers with multi-shot continuations.

Maze is applied to several interesting case studies,
    including callcc and Filinski's shift/reset.



Conclusion

Several contributions have not been discussed today…

Maze

SAT
solver

callcc

Filinski's
shift & reset

Control 
inversion

TesLogic

Tes Semantic
approach

 Maze, a Separation Logic
    for handlers with multi-shot continuations.

Maze is applied to several interesting case studies,
    including callcc and Filinski's shift/reset.

Tes, a type system for effect handlers
    and dynamic effect names.

Tes's strong type soundness follows by the semantic approach,
    which bridges type systems to Separation Logic.



Questions



Why multi-shot continuations break the frame rule?

 effect Escape : unit

 let f() = perform Escape

 let b = ref 0
 let g() = incr b; assert (!b = 1)

 let _ =
   match f(); g() with
   | effect Escape k ->
      continue (Obj.clone_continuation k) ();
      continue k () (* Assertion fails! *)
   | () -> ()

The function f exits twice:
    in the first time it terminates, the assertion b ↦ 0  holds,
    but, in the second time it terminates, this assertion no longer holds.

f()

g() g()

b ↦ 0

b ↦ 0

b ↦ 1

b ↦ 1

b ↦ 2

True    ewp f()〈ESC〉{_.True}

b ↦ 0    ewp f()〈ESC〉{_.b ↦ 0}



Contributions of Tes

Aliasing challenge: effect names may have aliases.

The literature proposes two solutions to address the aliasing challenge:
    (1) Effect coercions;
    (2) Dynamic allocation of effect labels + restriction to lexically scoped handlers.

Tes considers the dynamic allocation of effect labels as a construct on its own;
     a lexically scoped handler can be expressed as derived construct.

 effect Not_found : 'a

 let find f xs =
   let effect Found : int -> 'a in
   match 
     List.iter (fun x ->
       if f x then perform Found x) xs
   with
   | effect (Found x) _ -> x
   | () -> perform Not_found

∀θ. (int -{θ}-> bool) ->
      int list -{Not_found.θ}->
        int

In Tes, the type of find 
    (1) does not mention local effects names,
    (2) includes non-aliasing assumptions (Not_found ≠ θ).



Summary of Maze

∃x. u = v * P * □(∀y. Q    R(w))

ewp (perform (u))〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

A weakest precondition assertion in Maze assumes the same shape as in Hazel:

Moreover, Maze preserves most of Hazel's reasoning rules with the exception of
1. The frame rule, which is unsound in Maze;
2. The handler rules,

    which is adapted to allow reasoning about multiple invocations of the continuation; and
3. The rule for performing effects,

    which includes a persistently modality,
    justifying that the handlee can be resumed multiple times.

P    ewp e〈Ψ 〉{y.Q}



Reasoning Rules for callcc

isCont k Φ    □(∀w. Φ'(w)    Φ(w))

isCont k Φ'
persistent (isCont k Φ)

isCont k Φ      Φ(w)

wp (throw k w) {_.False}

isCont k Φ      wp e {Φ}

wp (callcc k. e) {Φ}

wp e {Φ}  ≜  ewp e〈CT〉{Φ}



Reasoning Rules for Filinski's shift/reset

□(∀w. Φ'(w)    wp (k w)〈_〉{Φ})    wp e〈Some Φ〉{Φ'}

wp (shift k. e)〈Some Φ〉{Φ'}

wp e 〈Some Φ〉{Φ'}     ≜
    isMetaCont (Some Φ)     ewp e〈CT〉{y. Φ'(y) * isMetaCont (Some Φ)}

wp e〈Some Φ〉{Φ}

wp (reset e)〈_〉{Φ}

isMetaCont opt          ≜  ∃k. mc ↦ k * inMetaCont opt k
inMetaCont (Some Φ) k   ≜  ∀y. Φ(y)     mc ↦ _     ewp (k y)〈CT〉{_.False}
inMetaCont None     _   ≜  True



Syntax of protocols

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

Remark.

Hazel's send/recv protocols are inspired by Actris's protocols [Hinrichsen et al, 20],
    used to describe the interaction between actors in message-passing concurrency.

A Hazel send/recv protocol is a coinductive Actris protocol
    defined as the repetition of a send/recv pair.

https://iris-project.org/pdfs/2020-popl-actris-final.pdf


isIterCC(iter,xs) ≜

   ∀f I.

    □ (∀us u vs. us ++ u :: vs = xs

       I(us)    ewp (f u)〈CT〉{_. I(us++[u])}

       )

    I([])    ewp (iter f)〈CT〉{_. I(xs)}

Control inversion using callcc

 type iter = (int -> unit) -> unit

 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

 let invert (iter : iter) : sequence =
   fun () -> callcc kc.
     let r = ref kc in
     let yield u = callcc kp.
       throw !r (Cons (u, fun () ->
         callcc kc. r := kc; throw kp ()))
     in
     iter yield; throw !r Nil

isSeqCC'(k, us, xs) ≜

    ewp k()〈CT〉{y. isHeadCC(y, us, xs)}

isHeadCC(y, us, xs) ≜ …
isSeqCC(k, xs) ≜ isSeqCC'(k, [], xs)

∀iter xs.
  isIterCC(iter, xs)
  ewp (invert iter)〈CT〉{k. isSeqCC(k, xs)}


