
Spy Game – Verifying a Local Generic Solver in Iris

Paulo Eḿılio de Vilhena, Jacques-Henri Jourdan, François Pottier

January 22, 2020

1 / 19

When is a function constant?

Consider a program “f” that behaves extensionally.

Is it possible to dynamically detect that “f” is a constant function?

What if “f” is defined on lazy integers instead?

f: int -> int

2 / 19

When is a function constant?

Consider a program “f” that behaves extensionally.

Is it possible to dynamically detect that “f” is a constant function? No.

What if “f” is defined on lazy integers instead?

type lazy_int = unit -> int

f: lazy_int -> int

2 / 19

Approximate solution

Idea: “If f does not use its argument, then it must be constant.”

type lazy_int = unit -> int

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy: lazy_int =

fun () -> r := false; 0
in
let _ = f spy in
!r

• We refer to this programming technique as spying.
• Can we verify the correctness of is_constant?

3 / 19

Approximate solution

Idea: “If f does not use its argument, then it must be constant.”

type lazy_int = unit -> int

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy: lazy_int =

fun () -> r := false; 0
in
let _ = f spy in
!r

• We refer to this programming technique as spying.
• Can we verify the correctness of is_constant?

3 / 19

Approximate solution

Idea: “If f does not use its argument, then it must be constant.”

type lazy_int = unit -> int

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy: lazy_int =

fun () -> r := false; 0
in
let _ = f spy in
!r

• We refer to this programming technique as spying.
• Can we verify the correctness of is_constant?

3 / 19

Approximate solution

Idea: “If f does not use its argument, then it must be constant.”

type lazy_int = unit -> int

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy: lazy_int =

fun () -> r := false; 0
in
let _ = f spy in
!r

• We refer to this programming technique as spying.
• Can we verify the correctness of is_constant?

3 / 19

Approximate solution

Idea: “If f does not use its argument, then it must be constant.”

type lazy_int = unit -> int

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy: lazy_int =

fun () -> r := false; 0
in
let _ = f spy in
!r

• We refer to this programming technique as spying.
• Can we verify the correctness of is_constant?

3 / 19

Approximate solution

Idea: “If f does not use its argument, then it must be constant.”

type lazy_int = unit -> int

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy: lazy_int =

fun () -> r := false; 0
in
let _ = f spy in
!r

• We refer to this programming technique as spying.
• Can we verify the correctness of is_constant?

3 / 19

Approximate solution

Idea: “If f does not use its argument, then it must be constant.”

type lazy_int = unit -> int

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy: lazy_int =

fun () -> r := false; 0
in
let _ = f spy in
!r

• We refer to this programming technique as spying.
• Can we verify the correctness of is_constant?

3 / 19

Motivation

Why is this a relevant question?
• Spying has never been verified in separation logic.
• Spying is used in real-world fixed point computation algorithms.

In the rest of this talk
• Explain and verify spying using Iris – an expressive separation logic.
• By the end, we will have the key ideas to verify is_constant!
• These same ideas allow verifying fixed point computation algorithms.

4 / 19

Specification of is_constant

let is_constant (f: lazy_int -> int) =
let r = ref true in
let spy () = r := false; 0 in
let _ = f spy in !r

The specification is a Hoare triple:

{f implements ϕ}
is constant f

{b. b = true ⇒ ∃c. ∀m. ϕ(m) = c}

“x computes m” is sugar for {true} x () {y . y = m}
“f implements ϕ” is sugar for

∀ x, m. {x computes m} f x {y . y = ϕ(m)}

5 / 19

Intuition

let is_constant (f: lazy_int -> int) =
(* Assumption : f implements ϕ *)
let r = ref true in
let spy () =

r := false; 0
in
let _ = f spy in
!r

At a first glimpse, the code suggests an intuitive idea:

“If r contains true, then ϕ is a constant function.”

The assertion becomes true only after “f spy”. It is not an invariant.

6 / 19

Intuition

let is_constant (f: lazy_int -> int) =
(* Assumption : f implements ϕ *)
let r = ref true in
let spy () =

r := false; 0
in
let _ = f spy in
!r

At a first glimpse, the code suggests an intuitive idea:

“If r contains true, then ϕ is a constant function.”

The assertion becomes true only after “f spy”. It is not an invariant.

6 / 19

Intuition

let is_constant (f: lazy_int -> int) =
(* Assumption : f implements ϕ *)
let r = ref true in
let spy () =

r := false; 0
in
let _ = f spy in
!r

At a first glimpse, the code suggests an intuitive idea:

“If r contains true, then ϕ is a constant function.”

The assertion becomes true only after “f spy”. It is not an invariant.

6 / 19

Intuition

let is_constant (f: lazy_int -> int) =
(* Assumption : f implements ϕ *)
let r = ref true in
let spy () =

r := false; 0
in
let _ = f spy in
!r

At a first glimpse, the code suggests an intuitive idea:

“If r contains true, then ϕ is a constant function.”

The assertion becomes true only after “f spy”. It is not an invariant.

6 / 19

Intuition

let is_constant (f: lazy_int -> int) =
(* Assumption : f implements ϕ *)
let r = ref true in
let spy () =

r := false; 0
in
let _ = f spy in
!r

At a first glimpse, the code suggests an intuitive idea:

“If r contains true, then ϕ is a constant function.”

The assertion becomes true only after “f spy”. It is not an invariant.

6 / 19

Insight 1

let is_constant (f: lazy_int -> int) =
(* Assumption : f implements ϕ *)
let r = ref true in
let spy () =

r := false; 0
in
let _ = f spy in
!r

A better candidate invariant mentions how many times f calls spy:
“#(calls) = #(past calls) + #(future calls)

and
if r contains true then #(past calls) = 0.”

To name the number of future calls, we need prophecy counters.

7 / 19

Prophecy Counters

They are ghost code; they do not exist at runtime.

Implemented using Iris’s prophecy variables (Jung et al. 2020).

{true}
prophCounter()
{p. ∃n. p ⇝ n}

{p ⇝ n}
prophDecr p

{(). 0 < n ∗ p ⇝ (n − 1)}

{p ⇝ n}
prophZero p
{(). n = 0}

Intuition
• “The counter predicts how many times it will be decremented.”

8 / 19

The Invariant
let is_constant f =

let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p;
r := false; 0

in
let _ = f spy in
prophZero p;
!r

The operation prophCounter () yields a natural number n.

Because we use prophDecr inside spy and prophZero at the end,
n is the number of times spy will be called!

n = #(calls)

9 / 19

The Invariant
let is_constant f =

let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p;
r := false; 0

in
let _ = f spy in
prophZero p;
!r

Informal:
“#(calls) = #(past calls) + #(future calls)

and
if r contains true then #(past calls) = 0.”

Formal:
Inv(r, p, n) = ∃ (k : nat) (l : nat) (b : bool).

p⇝ l ∗ n = k + l ∗
r 7→ b ∗ (b = true ⇒ k = 0)

10 / 19

The Invariant
let is_constant f =

let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p;
r := false; 0

in
let _ = f spy in
prophZero p;
!r

At the end, by exploiting the invariant, we obtain:

r 7→ b ∗ (b = true ⇒ n = 0)

“If r contains true, then spy has never been called.”

But how to prove that ϕ is constant from there?

11 / 19

The Invariant
let is_constant f =

let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p;
r := false; 0

in
let _ = f spy in
prophZero p;
!r

At the end, by exploiting the invariant, we obtain:

r 7→ b ∗ (b = true ⇒ n = 0)

“If r contains true, then spy has never been called.”

But how to prove that ϕ is constant from there?

11 / 19

Insight 2 – The link between n and ϕ

let is_constant f =
let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p; r := false; 0
in
let _ = f spy in
prophZero p; !r

“If spy is never called, it can pretend to compute an arbitrary integer.”

n = 0 =⇒ ∀m. {true} spy () {y . y = m}

Therefore

n = 0 =⇒

 {f implements ϕ}
f spy

{c.

∀m.

c = ϕ(m)}



12 / 19

Insight 2 – The link between n and ϕ

let is_constant f =
let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p; r := false; 0
in
let _ = f spy in
prophZero p; !r

“If spy is never called, it can pretend to compute an arbitrary integer.”

n = 0 =⇒ ∀m. spy computes m

Therefore

n = 0 =⇒

 {f implements ϕ}
f spy

{c.

∀m.

c = ϕ(m)}



12 / 19

Insight 2 – The link between n and ϕ

let is_constant f =
let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p; r := false; 0
in
let _ = f spy in
prophZero p; !r

“If spy is never called, it can pretend to compute an arbitrary integer.”

n = 0 =⇒ ∀m. spy computes m

Therefore

n = 0 =⇒ ∀m.

 {f implements ϕ}
f spy

{c.

∀m.

c = ϕ(m)}


12 / 19

Insight 2 – The link between n and ϕ

let is_constant f =
let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p; r := false; 0
in
let _ = f spy in
prophZero p; !r

“If spy is never called, it can pretend to compute an arbitrary integer.”

n = 0 =⇒ ∀m. spy computes m

Therefore

n = 0 =⇒ ∀m.

 {f implements ϕ}
f spy

{c.

∀m.

c = ϕ(m)}


12 / 19

Insight 2 – The link between n and ϕ

let is_constant f =
let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p; r := false; 0
in
let _ = f spy in
prophZero p; !r

“If spy is never called, it can pretend to compute an arbitrary integer.”

n = 0 =⇒ ∀m. spy computes m

Therefore

n = 0 =⇒

 {f implements ϕ}
f spy

{c. ∀m. c = ϕ(m)}


12 / 19

Conjunction rule

Moving the quantifier is justified by a restricted conjunction rule:

∀x . {P} e {y . Q(x , y)} Q is pure
{P} e′ {y . ∀x .Q(x , y)}

where e′ is a copy of e instrumented with prophecy variables.

The proof in Iris is novel and is yet another use case of prophecies.

13 / 19

Combining the previous steps
let is_constant f =

let r = ref true in
let p = prophCounter () in
let spy () =

prophDecr p; r := false; 0
in let _ = f spy in
prophZero p; !r

“If r contains true at the end, then spy is never called.”

r 7→ b ∗ (b = true ⇒ n = 0)

“If spy is never called, then ϕ is a constant function.”

n = 0 =⇒

 {f implements ϕ}
f spy

{c. ∀m. c = ϕ(m)}


Conclusion: “If r contains true at the end, then ϕ is constant.”!

14 / 19

Summary

What we have seen so far
• is_constant – an example of spying.
• Proof sketch for is_constant.
• How prophecy variables are used to handle spying.
• A restricted conjunction rule.

For the rest of the talk
• What is a local generic solver.
• Explain the connection between spying and local generic solvers.

15 / 19

What is a Local Generic Solver?

A term coined by Fecht and Seidl (1999).

• A solver computes the least function “phi” that satisfies
eqs phi = phi

where “eqs” is a user-supplied function.

• Generic means it is parameterized with a user-defined partial order.

• Local means phi is computed on demand
and need not be defined everywhere.

16 / 19

API of a Local Generic Solver

type valuation = variable -> property
val lfp: (valuation -> valuation) -> valuation

A simple example is to compute Fibonacci:

type valuation = int -> int
let eqs (phi: valuation) (n: int) =

if n <= 1 then 1 else phi (n - 1) + phi (n - 2)
in
let fib = lfp eqs

17 / 19

Dependencies

“fib at n depends on fib at n - 1 and n - 2.”

type valuation = int -> int
let eqs (phi: valuation) (n: int) =

if n <= 1 then 1 else phi (n - 1) + phi (n - 2)
in
let fib = lfp eqs

• Local generic solvers use dependencies for efficiency.
• Dependencies are discovered at runtime via spying.

18 / 19

Conclusion

What is in the paper
• Improvements to Iris’s prophecy variable API.
• Proof of a conjunction rule.
• Use of locks to make our code thread-safe.
• Specification and proof of modulus, the general case of spying.
• Specification and proof of a local generic solver.

Limitations
• We only prove partial correctness.
• We do not prove deadlock-freedom.

19 / 19

Questions?

19 / 19

modulus

Spying is subsumed by a single combinator, modulus, so named by
Longley (1999).

let modulus ff f =
let xs = ref [] in
let spy x =

xs := x :: !xs;
f x

in
let c = ff spy in
(c, !xs)

• lfp uses modulus.
• is_constant can be written in terms of modulus.

19 / 19

modulus

Spying is subsumed by a single combinator, modulus, so named by
Longley (1999).

let modulus ff f =
let xs = ref [] in
let spy x =

xs := x :: !xs;
f x

in
let c = ff spy in
(c, !xs)

let is_constant pred =
let r = ref true in
let spy () =

r := false;
0

in
let _ = pred spy in
!r

• lfp uses modulus.
• is_constant can be written in terms of modulus.

19 / 19

modulus

Spying is subsumed by a single combinator, modulus, so named by
Longley (1999).

let modulus ff f =
let xs = ref [] in
let spy x =

xs := x :: !xs;
f x

in
let c = ff spy in
(c, !xs)

let is_constant pred =
let zero () = 0 in
match

modulus pred zero
with
| _, [] -> true
| _, _ :: _ -> false

• lfp uses modulus.
• is_constant can be written in terms of modulus.

19 / 19

Conjunction rule

∀x . {P} e () {y . Q x y} Q is pure
{P} withProph e {y . ∀x .Q x y}

where withProph e is the program e instrumented with prophecies:

let withProph (e: unit -> ’a) =
let p = newProph () in
let y = e () in
resolveProph p y;
y

19 / 19

Prophecy variables

Prophecy Allocation
{true}

newProph()
{p. ∃zs. p ⇝ zs}

Prophecy Assignment
{p ⇝ zs}

resolveProph p x{
(). ∃zs ′. zs = x :: zs ′ ∗ p ⇝ zs ′}

Prophecy Disposal
{p ⇝ zs}

disposeProph p
{(). zs = []}

Improvements
• The operation disposeProph is new.
• The list zs can have an user-defined type.

19 / 19

Specification of Fix

∀ eqs E . (E is monotone) ⇒
{eqs implements E}

lfp eqs
{phi. phi implements µ̄E}

Remarks
• µ̄E is the optimal least fixed point of E .
• Partial correctness: termination is not guaranteed.
• Possible deadlocks depending on the user implementation of E .

19 / 19

Related work

Hofmann et al. (2010a) present a Coq proof of a local generic solver:
• they model the solver as a computation in a state monad,
• and they assume the client can be modeled as a strategy tree.

Why it is permitted to model the client in this way is the subject of two
separate papers (Hofmann et al. 2010b; Bauer et al. 2013).

19 / 19

