A Type System for Effect Handlers and Dynamic Labels

Paulo Emílio de Vilhena and François Pottier

25/04/2023

Type Systems. In this paper, we propose *Tes*, a *type system* for *effect handlers*.

Semantics of Handlers. We also explore the different choices in the *design space of handlers*. We argue in favor of one particular *interface* for programming with handlers.

Semantics of Handlers

Effect Handlers – 101

Effect handlers generalize exception handlers:

Whereas *raising* an exception *discards* the computation, *performing* an effect *suspends* the computation, which is reified as a *continuation*.

```
exception Division_by_zero
                                           effect Division_by_zero : int
let ( / ) x y =
                                           let ( / ) x y =
if y = 0 then raise Division_by_zero
                                            if y = 0 then perform Division_by_zero
                                            else Int.div x y
else Int.div x y
let =
                                           let =
  match 1 + (1 / 0) with
                                             match 1 + (1 / 0) with
    exception Division_by_zero -> 0
                                             effect Division_by_zero k ->
                                                continue k 0
    v \rightarrow v
                                               v \rightarrow v
```

(Examples in OCaml 4.12)

Effect Handlers - 101

Effect handlers generalize exception handlers:

Whereas *raising* an exception *discards* the computation, *performing* an effect *suspends* the computation, which is reified as a *continuation*.

```
exception Division_by_zero
                                           effect Division_by_zero : int
let ( / ) x y =
                                           let ( / ) x y =
if y = 0 then raise Division_by_zero
                                            if y = 0 then perform Division_by_zero
else Int.div x y
                                            else Int.div x y
let =
                                           let =
  match 1 + (1 / 0) with
                                             match 1 + (1 / 0) with
    exception Division_by_zero -> 0
                                             effect Division_by_zero k ->
                                                continue k 0
    v \rightarrow v
                                               v \rightarrow v
```

(Examples in OCaml 4.12)

-: int = 0

Effect Handlers – 101

Effect handlers generalize exception handlers:

Whereas *raising* an exception *discards* the computation, *performing* an effect *suspends* the computation, which is reified as a *continuation*.

```
exception Division_by_zero
                                          effect Division_by_zero : int
let ( / ) x y =
                                          let ( / ) x y =
if y = 0 then raise Division_by_zero
                                           if y = 0 then perform Division_by_zero
else Int.div x y
                                           else Int.div x y
let =
                                          let =
  match 1 + (1 / 0) with
                                            match 1 + (1 / 0) with
    exception Division_by_zero -> 0
                                             effect Division_by_zero k ->
                                               continue k 0
    v \rightarrow v
                                              y -> y
-: int = 0
                                          -: int = 1
                                                               (Examples in OCaml 4.12)
```

Effect Names

An *effect name* specifies which effect is handled by a handler. In the previous example, the effect name is Division_by_zero. It is *globally defined*: its scope spans over the entire program.

```
effect Division_by_zero : int
let ( / ) x y =
    if y = 0 then perform Division_by_zero
    else Int.div x y

let _ =
    match 1 + (1 / 0) with
    | effect Division_by_zero k ->
        continue k 0
    | y -> y
```

Effect Names

An *effect name* specifies which effect is handled by a handler. In the previous example, the effect name is Division_by_zero. It is *globally defined*: its scope spans over the entire program.

```
effect Division_by_zero : int
let ( / ) x y =
    if y = 0 then perform Division_by_zero
    else Int.div x y
let _ =
    match 1 + (1 / 0) with
    | effect Division_by_zero k ->
        continue k 0
    | y -> y
```

We also argue in favor of *locally defined* names.

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

Allocate a memory cell named calls.

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

Apply ff to a modified version of f that performs Tick when called.

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

Increment calls by one when Tick is performed.

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

Read the state of calls at the end.

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

This implementation however is *incorrect*!

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

There are *two* problems with this implementation of **counter**:

- 1. The function ff might *intercept* Tick effects.
- 2. The function **f** might *perform* Tick effects.

Panorama of Semantics of Handlers

There are at least *three* approaches to overcome the issue that f might perform Tick effects:

1. Effect Coercions

Allow an effect to *bypass* its innermost handler.

- 2. Dynamic Allocation of Effect Labels Allows an effect to be locally defined.
- 3. Lexically Scoped Handlers

Combine *effect allocation* and *handler* into a single operation, a *lexically scoped handler*.

1. Effect Coercions

Koka's mask allows an effect to bypass its innermost handler.

```
effect ctl tick() : ()
fun counter(ff : forall <e> (a -> e b) -> e c)
                 : (forall \langle e \rangle (a - \rangle e b) - \rangle e (c, int))
  fn(f) {
    val comp =
      with ctl tick() {fn(n) {resume(())(n + 1)}}
      val y =
         ff (fn(x) {tick(); mask<tick>(fn() {f(x)})})
      fn(n) \{(y, n)\}
    comp(0)
  }
```

Koka's mask allows an effect to bypass its innermost handler.

```
effect ctl tick() : ()
fun counter(ff : forall <e> (a -> e b) -> e c)
                 : (forall \langle e \rangle (a - \rangle e b) - \rangle e (c, int))
  fn(f) {
    val comp =
      with ctl tick() {fn(n) {resume(())(n + 1)}}
      val y =
         ff (fn(x) {tick(); mask<tick>(fn() {f(x)}))
      fn(n) \{(y, n)\}
    comp(0)
```

Convenience. Operational semantics and type systems for effect coercions have been extensively studied (Biernacki et al.).

Limitation. Coercions modify the mechanism with which an effect finds its handler.

2. Dynamic Allocation of Effect Labels

In OCaml, an *effect declaration* binds an *effect name* to a *fresh effect label*. Its *scope* can be either *global* or *local*.

```
effect Tick : unit
let counter ff f =
  let calls = ref 0 in

match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)

CCaml
```

2. Dynamic Allocation of Effect Labels

In OCaml, an *effect declaration* binds an *effect name* to a *fresh effect label*. Its *scope* can be either *global* or *local*.

```
let counter ff f =
  let calls = ref 0 in
  let effect Tick : unit in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

2. Dynamic Allocation of Effect Labels

In OCaml, an *effect declaration* binds an *effect name* to a *fresh effect label*. Its *scope* can be either *global* or *local*.

```
let counter ff f =
  let calls = ref 0 in
  let effect Tick : unit in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

Convenience. It is the standard semantics of OCaml and it is similar to the approach used for *exceptions* in OCaml and ML.

Limitation. No type system (yet!). Devising such a system is the topic of this paper.

3. Lexically Scoped Handlers

The idiom of allocating an effect and immediately installing its handler is known as a *lexically scoped handler*.

The Scala library Effekt is restricted to this flavor of handler.

```
def counter [A, B, C] (ff: [E] \Rightarrow (A \Rightarrow B / E) \Rightarrow C
                       : ([E] => (A => B / E) => (C, Int) / E) =
  [E] => (f: A => B / E) =>
    var calls = 0
    handle {(scope : Scope[_, E]) =>
      val t = new Tick {
        type effect = scope.effect
        def tick() = scope.switch {resume =>
          calls = calls + 1; resume(())}
      {ff(x => t.tick() andThen f(x))} map {y => (y, calls)}
    }
                                                   Scala + Effekt
```

3. Lexically Scoped Handlers

The idiom of allocating an effect and immediately installing its handler is known as a *lexically scoped handler*.

The Scala library Effekt is restricted to this flavor of handler.

```
def counter [A,B,C] (ff: [E] \Rightarrow (A \Rightarrow B / E) \Rightarrow C
                      : ([E] => (A => B / E) => (C, Int) / E) =
  [E] => (f: A => B / E) =>
    var calls = 0
    handle {(scope : Scope[_, E]) =>
      val t = new Tick {
        type effect = scope.effect
        def tick() = scope.switch {resume =>
          calls = calls + 1; resume(())}
      {ff(x => t.tick() andThen f(x))} map {y => (y, calls)}
    }
                                                   Scala + Effekt
```

Convenience. There are *multiple type systems* for lexically scoped handlers.

Limitation. Lexically scoped handlers impose a "capability-passing" style.

```
def drunkFlip(amb: Amb, exc: Exc) =
  for {
    caught ← amb.flip()
    heads ← if (caught) amb.flip() else exc.raise("We dropped the coin")
  } yield if (heads) "Heads" else "Tails"
    Scala + Effekt
```

(Example from Brachthäuser et al. - JFP'20)

This Paper

We argue in favor of the *dynamic allocation of effect labels*.

And we introduce *Tes*, a type system for *effect handlers* and *dynamic labels*.

In the next part of the talk, I am going to show

- 1. What is the *standard approach* in systems for effects.
- 2. What is the *challenge* in devising a system for dynamic labels.
- 3. What is the *key idea* of Tes.
- 4. What are the *interesting aspects* of the system, *typing* and *subtyping rules*.

Tes follows the standard approach of type systems with support for effects: to annotate an arrow type with a *row*.

In Tes, a row describes the effects that a function might *perform* or *handle*.

τ, **κ** ::= ... $| \tau - {\rho} - > \kappa$ (Annotated Arrow) $| \forall \alpha. \tau$ (Value Polymorphism) $| \forall \theta. \tau$ (Effect Polymorphism) ρ ::= <> (Empty Row) $| (E:\tau = > \kappa) . \rho$ (Effect Signature) $| (E:Abs) . \rho$ (Absence Signature) $| \theta \cdot \rho$ (Row Variable)

The function filter yields the elements of xs that satisfy the function p.

```
let rec filter xs p =
  match xs with
  [] -> ()
  [ x :: xs ->
    (if p x then perform (Yield x));
    filter xs p
```

Reading.

"For every set of effects Θ , if p performs effects in Θ ,

then the expression filter xs p performs effects in $Y[\alpha]$. θ ."

The function reassemble installs a handler that *accumulates* the elements yielded by prog.

```
let reassemble prog =
  match prog() with
  | effect (Yield x) k ->
      x :: continue k ()
  | () -> []
```

The function reassemble installs a handler that *accumulates* the elements yielded by prog.

```
let reassemble prog =
  match prog() with
  | effect (Yield x) k ->
      x :: continue k ()
  | () -> []
```

```
reassemble : \alpha. \delta. \delta.
  (unit -{Y[\alpha].\theta]-> unit) -{Y<sup>†</sup>.\theta}->
  \alpha list
  where Y<sup>†</sup> = Yield:Abs
  and Y[\alpha] = Yield:\alpha=>unit
```

By instantiating α with int and θ with <> (the empty row), reassemble can be used to handle the following application of filter:

```
reassemble (fun () -> filter [0; 1; 2] (fun x -> x mod 2 = 0))
```

The function reassemble installs a handler that *accumulates* the elements yielded by prog.

```
let reassemble prog =
  match prog() with
  | effect (Yield x) k ->
      x :: continue k ()
  | () -> []
```

By instantiating α with int and θ with <> (the empty row), reassemble can be used to handle the following application of filter:

```
reassemble (fun () -> filter [0; 1; 2] (fun x -> x mod 2 = 0))
```

-: int list = [0; 2]

A Problem with Name Collisions?

The function reassemble installs a handler that *accumulates* the elements yielded by prog.

```
let reassemble prog =
  match prog() with
  | effect (Yield x) k ->
      x :: continue k ()
  | () -> []
```

Wait! Can Θ be instantiated to $Y[_]$?

In other words, can the substitution of **9** introduce a *name collision*?

A Problem with Name Collisions?

The function reassemble installs a handler that *accumulates* the elements yielded by prog.

```
let reassemble prog =
  match prog() with
  | effect (Yield x) k ->
      x :: continue k ()
  | () -> []
```

```
reassemble : \alpha. \U0.
  (unit -{Y[\alpha].\0}-> unit) -{Y^+.\0}->
  \alpha list
  where Y^+ = Yield:Abs
   and Y[\alpha] = Yield:\alpha=>unit
```

let unsafe : unit -{Y[†].Y[unit]}-> int list =
 fun () -> reassemble (fun () -> perform (Yield 0); perform (Yield ()))

A Problem with Name Collisions?

The function reassemble installs a handler that *accumulates* the elements yielded by prog.

```
let reassemble prog =
  match prog() with
  | effect (Yield x) k ->
      x :: continue k ()
  | () -> []
```

```
reassemble : \alpha. \U0.
  (unit -{Y[\alpha].\0}-> unit) -{Y^+.\0}->
  \alpha list
  where Y^+ = Yield:Abs
    and Y[\alpha] = Yield:\alpha=>unit
```

let unsafe : unit -{Y[†].Y[unit]}-> int list =
 fun () -> reassemble (fun () -> perform (Yield 0); perform (Yield ()))

Our answer is Yes. The function unsafe, for instance, is well-typed!

Key idea. To guard a function type with the assumption that names are distinct.

More specifically, we change the usual reading of an arrow type

This type now adds the *absence of name collisions* in **p** as a *precondition* to the evaluation of f.

Key idea. To guard a function type with the assumption that names are distinct.

More specifically, we change the usual reading of an arrow type

f : τ -{ρ}-> κ

This type now adds the *absence of name collisions* in **p** as a *precondition* to the evaluation of f.

New Reading.

"If the names in ρ are distinct, then, when applied to a value of type τ , the function f

(1) returns a value of type κ (or diverges);

(2) and, in the meantime, might perform one or more of the effects in p."

The Key Idea

Key idea. To guard a function type with the assumption that names are distinct.

```
unsafe : unit -{Y<sup>†</sup>.Y[unit]}-> int list
```

```
let unsafe() =
  reassemble (fun () ->
    perform (Yield 0); perform (Yield ())
)
```

Key idea. To guard a function type with the assumption that names are distinct.

```
unsafe : unit -{ Y<sup>†</sup> . Y[unit] }-> int list ~ empty -> int list
```

let unsafe() =
 reassemble (fun () ->
 perform (Yield 0); perform (Yield ())
)

The type empty has no inhabitant, thus unsafe cannot be called.

Typing Judgment.

Г⊢е:р:т

Reading.

"Under the assumption that names in ρ are distinct, the evaluation of the expression e
(1) returns a value of type τ (or diverges);
(2) and, in the meantime, might perform one or more of the effects in ρ."

Typing Rules.

$$\Gamma \vdash e : (E:Abs).\rho : τ$$

 $\Gamma \vdash let effect E in e : ρ : τ$
(Effect)

Reading (Bottom-Up).

"The allocation of the effect ${\ensuremath{\mathbb E}}$

(1) allows e to install a handler for this effect,

(2) allows e to assume that E is distinct from names in p."

Subtyping Rules.

A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries. If a collision is introduced, the type is unusable.

Because entries are supposedly distinct, their order in a row is not important.

Is it sound to discard the permission to install a handler?

D ⊢ E # p

(Erase)

Subtyping Rules.

$$\tau - \{\rho\} - > \kappa \leq \tau - \{\rho', \rho\} - > \kappa$$
 (Extend)

A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries. If a collision is introduced, the type is unusable.

Because entries are supposedly distinct, their order in a row is not important.

 $ρ_1$ is a permutation of $ρ_2$ (Permute) $τ -{ρ_1} → κ ≤ τ -{ρ_2} → κ$

Is it sound to discard the permission to install a handler?

 $D \vdash E \# \rho$

(Erase)

Subtyping Rules.

A concise and powerful rule that allows a row(Extend)</li

Because entries are supposedly distinct, their order in a row is not important. $\frac{\rho_1 \text{ is a permutation of } \rho_2}{\tau - \{\rho_1\}^{->} \kappa} \leq \tau - \{\rho_2\}^{->} \kappa$ (Permute)

(Erase)

Is it sound to discard the permission to install a handler?

Subtyping Rules.

(Extend)

 $\tau - \{\rho\} \rightarrow \kappa \leq \tau - \{\rho', \rho\} \rightarrow \kappa$

A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries. If a collision is introduced, the type is unusable.

Because entries are supposedly distinct, their order in a row is not important.

 $ρ_1$ is a permutation of $ρ_2$ (Permute) $τ -{ρ_1} → κ ≤ τ -{ρ_2} → κ$

Is it sound to discard the permission to install a handler?

D ⊢ E # o

(Erase)

Subtyping Rules.

(Extend)

≤ τ -{ρ}-> κ

 $\tau - \{\rho\} \rightarrow \kappa \leq \tau - \{\rho', \rho\} \rightarrow \kappa$

Because entries are supposedly distinct, their order in a row is not important.

τ -{(E:Abs).**ρ**}-> κ

A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries. If a collision is introduced, the type is unusable.

 ρ_1 is a permutation of ρ_2 (Permute) τ -{ ρ_1 }-> κ ≤ τ -{ ρ_2 }-> κ

Is it sound to discard the permission to install a handler?

(Erase) No! Removing E also removes the assumption that E is distinct from names in **ρ**.

Subtyping Rules.

(Extend)

τ -{ρ}-> κ ≤ **τ** -{ρ'·ρ}-> κ

A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries. If a collision is introduced, the type is unusable.

Because entries are supposedly distinct, their order in a row is not important.

 $ρ_1$ is a permutation of $ρ_2$ (Permute) $τ -{ρ_1} → κ ≤ τ -{ρ_2} → κ$

$$\frac{D \vdash E \# \rho}{D \vdash \tau - \{(E:Abs).\rho\} \rightarrow \kappa} \quad (Erase)$$

D is a disjointness context, it stores pairs of distinct names.

Conclusion

Semantics of Handlers.

• Through the example of counter,

we argued that the standard semantics of *global effect names* is *unsatisfactory*.

- We explored the *panorama of semantics of handlers* known in the literature:
 - 1. Effect coercions
 - 2. Dynamic allocation of effect labels
 - 3. Lexically scoped handlers

And we argued in favor of the second option, which is currently adopted by OCaml 5.

Conclusion

Type Systems.

- We introduced *Tes*, a type system for *effect handlers* and *dynamic labels*.
- In doing so we had faced a *name-collision* problem: *effect names might collide*.
- Our key idea is to modify the usual reading of an arrow type

f : τ -{ρ}-> κ

To include the *absence of name collisions* in ρ as a *precondition* to the evaluation of f.

• We showed how *powerful typing* and *subtyping* rules can then be succinctly stated.

Metatheory.

- We have omitted the *metatheory* of Tes from this talk. Check out the paper to know:
 - 1. What are the *guarantees* of Tes. (No unhandled effects.)
 - 2. How we articulate its proof of soundness.
 - 3. What is the relation between *effect polymorphism* and *absence of accidental handling*.

Proof of Soundness

Our proof of soundness follows the *semantic approach*, which consists of three steps:

- 1. Translate typing judgments as *specifications* written in a *certain program logic*. (In our case, we choose *TesLogic*, a *Separation Logic* with support for *handlers*.)
- 2. Prove that, if a *typing judgment* is *derivable*, then its *translation holds*.
- 3. Show that the translation implies the system's desired guarantees.

Pictorially,

 $\begin{array}{ccc} \Gamma \vdash e : \rho : \tau & \Longrightarrow & \Gamma \vDash e : \rho : \tau \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$

Effect Parametricity & Absence of Accidental Handling

The literature suggests that *parametricity* of *effect polymorphism* is equivalent to the absence of accidental handling.

Parametricity of Effect Polymorphism.

System S enjoys parametric effect polymorphism if

 $\exists model of S \begin{cases} 1. A logic (prop, \forall, \exists, \land, \lor, ...) \\ 2. An interpretation of types \\ \lor : ... \Rightarrow type \Rightarrow (val \Rightarrow prop) \\ 3. A semantic domain of rows \\ SRow \end{cases}$

such that

```
\mathbf{V}[\![ \forall \boldsymbol{\theta} \, \cdot \, \boldsymbol{\tau} ]\!]_{\mathbf{n}} = \forall E : SRow. \ \mathbf{V}[\![ \boldsymbol{\tau} ]\!]_{\mathbf{n} \{\boldsymbol{\theta} \neq E\}}
```

Absence of Accidental Handling.

System S enjoys absence of accidental handling if Zhang and Myers's equivalence laws hold.

In particular,

ff : $\forall \theta$. (int $-\{\theta\}$ -> int) $-\{\theta\}$ -> int

```
let effect E in
match ff (fun x \rightarrow perform (E x)) with
 effect (E x) k \rightarrow continue k (2*x)
  \vee - > \vee
```

Effect Parametricity & Absence of Accidental Handling

Let *Tes+TryFinally* be *Tes* extended with a *try-finally* construct, try *e* finally *f*, which executes the finally branch *f* every time control leaves *e*.

The system *Tes+TryFinally* enjoys *parametric effect polymorphism*, yet it *does not* enjoy *absence of accidental handling*.

```
let ff : V0. (int -{0}-> int) -{0}-> int =
fun f ->
let r = ref 0 in
try let _ = f 0 in !r finally (r := !r + 1)

ff (fun x -> 2*x) 
ff (fun x -> 2*x)

let effect E in
match ff (fun x -> perform (E x)) with
| effect (E x) k -> continue k (2*x)
| y -> y
```

1

Handler Rule

Typing Rules.

$$\Gamma \vdash e : (E:\iota=>\kappa).\rho : \tau$$

$$\Gamma, y:\tau \vdash r : (E:Abs).\rho : \tau'$$

$$\Gamma, x:\iota, k:\kappa-\{\rho\}->\tau' \vdash h : (E:Abs).\rho : \tau'$$

$$(Handler)$$

$$\Gamma \vdash \underset{| \ v \ -> \ r}{\overset{\text{match } e \ with}{\mid}} effect (E \ x) \ k \ -> \ h} : (E:Abs).\rho : \tau'$$

Reading.

"Given the permission to install a handler E: Abs, the handlee e is allowed to perform E according to an arbitrary signature E: ι=>κ, provided that
(1) r is well-typed,
(2) h is well-typed w.r.t this signature."

$$\vdash \text{ counter : } <>: \qquad (\forall \theta_1. (\alpha - \{\theta_1\} -> \beta) - \{\theta_1\} -> \gamma) -> \\ (\forall \theta_2. (\alpha - \{\theta_2\} -> \beta) - \{\theta_2\} -> (\gamma + \text{ int}))$$

```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```



```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```

```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```



```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```



```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```



```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```



```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
     calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```


$$\vdash \text{ counter : } <>: \qquad (\forall \theta_1. (\alpha - \{\theta_1\} -> \beta) - \{\theta_1\} -> \gamma) -> \\ (\forall \theta_2. (\alpha - \{\theta_2\} -> \beta) - \{\theta_2\} -> (\gamma + \text{ int}))$$

```
let counter ff = fun f ->
  let calls = ref 0 in
  let open struct effect Tick : unit end in
  match ff (fun x -> perform Tick; f x) with
  | effect Tick k ->
      calls := !calls + 1; continue k ()
  | y -> (y, !calls)
```