
A Type System for Effect Handlers
and Dynamic Labels

Paulo Emílio de Vilhena and François Pottier 25/04/2023

Semantics of Handlers. We also explore the different choices in the design space of handlers.
 We argue in favor of one particular interface for programming with handlers.

Type Systems. In this paper, we propose Tes, a type system for effect handlers.

Overview

Semantics of Handlers

Effect handlers generalize exception handlers:
 Whereas raising an exception discards the computation,
 performing an effect suspends the computation, which is reified as a continuation.

exception Division_by_zero

let (/) x y =
 if y = 0 then raise Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | exception Division_by_zero -> 0
 | y -> y

effect Division_by_zero : int

let (/) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | effect Division_by_zero k ->
 continue k 0
 | y -> y

Effect Handlers - 101

(Examples in OCaml 4.12)

Effect handlers generalize exception handlers:
 Whereas raising an exception discards the computation,
 performing an effect suspends the computation, which is reified as a continuation.

exception Division_by_zero

let (/) x y =
 if y = 0 then raise Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | exception Division_by_zero -> 0
 | y -> y

effect Division_by_zero : int

let (/) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | effect Division_by_zero k ->
 continue k 0
 | y -> y

-: int = 0

Effect Handlers - 101

(Examples in OCaml 4.12)

Effect handlers generalize exception handlers:
 Whereas raising an exception discards the computation,
 performing an effect suspends the computation, which is reified as a continuation.

exception Division_by_zero

let (/) x y =
 if y = 0 then raise Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | exception Division_by_zero -> 0
 | y -> y

effect Division_by_zero : int

let (/) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | effect Division_by_zero k ->
 continue k 0
 | y -> y

-: int = 0

Effect Handlers - 101

(Examples in OCaml 4.12)

-: int = 1

effect Division_by_zero : int

let (/) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | effect Division_by_zero k ->
 continue k 0
 | y -> y

An effect name specifies which effect is handled by a handler.
In the previous example, the effect name is Division_by_zero.

It is globally defined: its scope spans over the entire program.

Effect Names

effect Division_by_zero : int

let (/) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y

let _ =
 match 1 + (1 / 0) with
 | effect Division_by_zero k ->
 continue k 0
 | y -> y

An effect name specifies which effect is handled by a handler.
In the previous example, the effect name is Division_by_zero.

It is globally defined: its scope spans over the entire program.

Effect Names

We also argue in favor of
 locally defined names.

Specification. The function counter counts the number of times ff calls its argument.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

Effect Names

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

Allocate a memory cell named calls.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

Apply ff to a modified version of f that
performs Tick when called.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

Increment calls by one
when Tick is performed.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls) Read the state of calls at the end.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

This implementation however is incorrect!

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

There are two problems with this implementation of counter:
1. The function ff might intercept Tick effects.
2. The function f might perform Tick effects.

There are at least three approaches to overcome the issue that f might perform Tick effects:

 1. Effect Coercions
 Allow an effect to bypass its innermost handler.

 3. Lexically Scoped Handlers
 Combine effect allocation and handler into
 a single operation, a lexically scoped handler.

 2. Dynamic Allocation of Effect Labels
 Allows an effect to be locally defined.

Koka

Frank

Dynamic Allocation of
Effect Labels

Lexically Scoped
Handlers

Effekt

EFF

Panorama of Semantics of Handlers

Effect Coercions

effect ctl tick() : ()

fun counter(ff : forall <e> (a -> e b) -> e c)
 : (forall <e> (a -> e b) -> e (c, int))
 fn(f) {
 val comp =
 with ctl tick() {fn(n) {resume(())(n + 1)}}
 val y =
 ff (fn(x) {tick(); mask<tick>(fn() {f(x)})})
 fn(n) {(y, n)}
 comp(0)
 }

1. Effect Coercions

Koka

Koka’s mask allows an effect to bypass its innermost handler.

effect ctl tick() : ()

fun counter(ff : forall <e> (a -> e b) -> e c)
 : (forall <e> (a -> e b) -> e (c, int))
 fn(f) {
 val comp =
 with ctl tick() {fn(n) {resume(())(n + 1)}}
 val y =
 ff (fn(x) {tick(); mask<tick>(fn() {f(x)})})
 fn(n) {(y, n)}
 comp(0)
 }

1. Effect Coercions

Koka

Koka’s mask allows an effect to bypass its innermost handler.

Convenience. Operational
 semantics and type systems
 for effect coercions have been
 extensively studied
 (Biernacki et al.).

Limitation. Coercions modify
 the mechanism with which an
 effect finds its handler.

effect Tick : unit

let counter ff f =
 let calls = ref 0 in

 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

2. Dynamic Allocation of Effect Labels

In OCaml, an effect declaration binds an effect name to a fresh effect label.
Its scope can be either global or local.

2. Dynamic Allocation of Effect Labels

let counter ff f =
 let calls = ref 0 in
 let effect Tick : unit in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

In OCaml, an effect declaration binds an effect name to a fresh effect label.
Its scope can be either global or local.

2. Dynamic Allocation of Effect Labels

let counter ff f =
 let calls = ref 0 in
 let effect Tick : unit in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

Convenience. It is the standard
 semantics of OCaml and it is
 similar to the approach used for
 exceptions in OCaml and ML.

Limitation. No type system (yet!).
 Devising such a system is the
 topic of this paper.

In OCaml, an effect declaration binds an effect name to a fresh effect label.
Its scope can be either global or local.

def counter[A,B,C](ff: [E] => (A => B / E) => C / E)
 : ([E] => (A => B / E) => (C, Int) / E) =
 [E] => (f: A => B / E) =>
 var calls = 0
 handle {(scope : Scope[_, E]) =>
 val t = new Tick {
 type effect = scope.effect
 def tick() = scope.switch {resume =>
 calls = calls + 1; resume(())}
 }
 {ff(x => t.tick() andThen f(x))} map {y => (y, calls)}
 }

3. Lexically Scoped Handlers

The idiom of allocating an effect and immediately installing its handler is known as a
 lexically scoped handler.

The Scala library Effekt is restricted to this flavor of handler.

Effekt

def counter[A,B,C](ff: [E] => (A => B / E) => C / E)
 : ([E] => (A => B / E) => (C, Int) / E) =
 [E] => (f: A => B / E) =>
 var calls = 0
 handle {(scope : Scope[_, E]) =>
 val t = new Tick {
 type effect = scope.effect
 def tick() = scope.switch {resume =>
 calls = calls + 1; resume(())}
 }
 {ff(x => t.tick() andThen f(x))} map {y => (y, calls)}
 }

3. Lexically Scoped Handlers

Effekt

The idiom of allocating an effect and immediately installing its handler is known as a
 lexically scoped handler.

The Scala library Effekt is restricted to this flavor of handler.

3. Lexically Scoped Handlers

Convenience. There are multiple type systems for lexically scoped handlers.

Limitation. Lexically scoped handlers impose a “capability-passing” style.

def drunkFlip(amb: Amb, exc: Exc) =
 for {
 caught ← amb.flip()
 heads ← if (caught) amb.flip() else exc.raise("We dropped the coin")
 } yield if (heads) "Heads" else "Tails"

Effekt

(Example from Brachthäuser et al. - JFP’20)

We argue in favor of the dynamic allocation of effect labels.

Dynamic Allocation of
Effect Labels

EFF

This Paper

And we introduce Tes,
 a type system for effect handlers and dynamic labels.

In the next part of the talk, I am going to show

 2. What is the challenge in devising a system for dynamic labels.

 3. What is the key idea of Tes.

 4. What are the interesting aspects of the system,
 typing and subtyping rules.

 1. What is the standard approach in systems for effects.

Tes

 τ, κ ::= …
 | τ -{ρ}-> κ (Annotated Arrow)
 | ∀α. τ (Value Polymorphism)
 | ∀θ. τ (Effect Polymorphism)

Syntax of Types

Tes follows the standard approach of type systems with support for effects:
 to annotate an arrow type with a row.
In Tes, a row describes the effects that a function might perform or handle.

 ρ ::= <> (Empty Row)
 | (E:τ=>κ).ρ (Effect Signature)
 | (E:Abs).ρ (Absence Signature)
 | θ⋅ρ (Row Variable)

Example

let rec filter xs p =
 match xs with
 | [] -> ()
 | x :: xs ->
 (if p x then perform (Yield x));
 filter xs p

filter : ∀α. ∀θ.
 α list ->
 (α -{θ}-> bool) -{Y[α].θ}->
 unit
 where Y[α] = Yield:α=>unit

The function filter yields the elements of xs that satisfy the function p.

Reading.
 “For every set of effects θ, if p performs effects in θ,
 then the expression filter xs p performs effects in Y[α].θ.”

Example

The function reassemble installs a handler that accumulates the elements yielded by prog.

let reassemble prog =
 match prog() with
 | effect (Yield x) k ->
 x :: continue k ()
 | () -> []

reassemble : ∀α. ∀θ.
 (unit -{Y[α].θ}-> unit) -{Y✝.θ}->
 α list
 Y✝

 and Y[α] = Yield:α=>unit
 where Y = Yield:Abs

reassemble (fun () -> filter [0; 1; 2] (fun x -> x mod 2 = 0))

By instantiating α with int and θ with <> (the empty row),
 reassemble can be used to handle the following application of filter:

Example

The function reassemble installs a handler that accumulates the elements yielded by prog.

let reassemble prog =
 match prog() with
 | effect (Yield x) k ->
 x :: continue k ()
 | () -> []

reassemble : ∀α. ∀θ.
 (unit -{Y[α].θ}-> unit) -{Y✝.θ}->
 α list
 Y✝

 and Y[α] = Yield:α=>unit
 where Y = Yield:Abs

reassemble (fun () -> filter [0; 1; 2] (fun x -> x mod 2 = 0))

-: int list = [0; 2]

By instantiating α with int and θ with <> (the empty row),
 reassemble can be used to handle the following application of filter:

Example

The function reassemble installs a handler that accumulates the elements yielded by prog.

let reassemble prog =
 match prog() with
 | effect (Yield x) k ->
 x :: continue k ()
 | () -> []

reassemble : ∀α. ∀θ.
 (unit -{Y[α].θ}-> unit) -{Y✝.θ}->
 α list
 Y✝

 and Y[α] = Yield:α=>unit
 where Y = Yield:Abs

A Problem with Name Collisions?

Wait! Can θ be instantiated to Y[_]?
In other words, can the substitution of θ introduce a name collision?

The function reassemble installs a handler that accumulates the elements yielded by prog.

let reassemble prog =
 match prog() with
 | effect (Yield x) k ->
 x :: continue k ()
 | () -> []

reassemble : ∀α. ∀θ.
 (unit -{Y[α].θ}-> unit) -{Y✝.θ}->
 α list
 Y✝

 and Y[α] = Yield:α=>unit
 where Y = Yield:Abs

A Problem with Name Collisions?

Wait! Can θ be instantiated to Y[_]?
In other words, can the substitution of θ introduce a name collision?

let unsafe : unit -{Y✝.Y[unit]}-> int list =
 fun () -> reassemble (fun () -> perform (Yield 0); perform (Yield ()))

The function reassemble installs a handler that accumulates the elements yielded by prog.

let reassemble prog =
 match prog() with
 | effect (Yield x) k ->
 x :: continue k ()
 | () -> []

reassemble : ∀α. ∀θ.
 (unit -{Y[α].θ}-> unit) -{Y✝.θ}->
 α list
 Y✝

 and Y[α] = Yield:α=>unit
 where Y = Yield:Abs

A Problem with Name Collisions?

Wait! Can θ be instantiated to Y[_]?
In other words, can the substitution of θ introduce a name collision?

let unsafe : unit -{Y✝.Y[unit]}-> int list =
 fun () -> reassemble (fun () -> perform (Yield 0); perform (Yield ()))

The function reassemble installs a handler that accumulates the elements yielded by prog.

let reassemble prog =
 match prog() with
 | effect (Yield x) k ->
 x :: continue k ()
 | () -> []

Our answer is Yes. The function unsafe, for instance, is well-typed!

reassemble : ∀α. ∀θ.
 (unit -{Y[α].θ}-> unit) -{Y✝.θ}->
 α list
 Y✝

 and Y[α] = Yield:α=>unit
 where Y = Yield:Abs

The Key Idea

Key idea. To guard a function type with the assumption that names are distinct.

More specifically, we change the usual reading of an arrow type
 f : τ -{ρ}-> κ
This type now adds the absence of name collisions in ρ as a precondition to the evaluation of f.

The Key Idea

Key idea. To guard a function type with the assumption that names are distinct.

More specifically, we change the usual reading of an arrow type
 f : τ -{ρ}-> κ
This type now adds the absence of name collisions in ρ as a precondition to the evaluation of f.

New Reading.
 “If the names in ρ are distinct, then, when applied to a value of type τ, the function f
 (1) returns a value of type κ (or diverges);
 (2) and, in the meantime, might perform one or more of the effects in ρ.”

let unsafe() =
 reassemble (fun () ->
 perform (Yield 0); perform (Yield ())
)

The Key Idea

unsafe : unit -{Y✝.Y[unit]}-> int list

Key idea. To guard a function type with the assumption that names are distinct.

let unsafe() =
 reassemble (fun () ->
 perform (Yield 0); perform (Yield ())
)

The Key Idea

unsafe : unit -{Y✝.Y[unit]}-> int list ≃ empty -> int list

The type empty has no inhabitant,
 thus unsafe cannot be called.

Key idea. To guard a function type with the assumption that names are distinct.

The Interesting Bits

Γ ⊢ e : ρ : τ

Typing Judgment.

Reading.
 “Under the assumption that names in ρ are distinct,
 the evaluation of the expression e
 (1) returns a value of type τ (or diverges);
 (2) and, in the meantime,
 might perform one or more of the effects in ρ.”

The Interesting Bits

Γ ⊢ let effect E in e : ρ : τ

Typing Rules.

Γ ⊢ e : (E:Abs).ρ : τ
(Effect)

Reading (Bottom-Up).
 “The allocation of the effect E
 (1) allows e to install a handler for this effect,
 (2) allows e to assume that E is distinct from names in ρ.”

The Interesting Bits

Subtyping Rules.

(Extend)
τ -{ρ}-> κ ≤ τ -{ρ'.ρ}-> κ

(Permute)
τ -{ρ1}-> κ ≤ τ -{ρ2}-> κ

ρ1 is a permutation of ρ2

(Erase)
D ⊢ τ -{(E:Abs).ρ}-> κ ≤ τ -{ρ}-> κ

D ⊢ E # ρ

A concise and powerful rule that allows a row
to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.

Because entries are supposedly distinct,
their order in a row is not important.

Is it sound to discard the permission
to install a handler?

The Interesting Bits

Subtyping Rules.

(Extend)
τ -{ρ}-> κ ≤ τ -{ρ'.ρ}-> κ

(Permute)

(Erase)
D ⊢ τ -{(E:Abs).ρ}-> κ ≤ τ -{ρ}-> κ

D ⊢ E # ρ

Is it sound to discard the permission
to install a handler?

τ -{ρ1}-> κ ≤ τ -{ρ2}-> κ

ρ1 is a permutation of ρ2

A concise and powerful rule that allows a row
to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.

Because entries are supposedly distinct,
their order in a row is not important.

The Interesting Bits

Subtyping Rules.

(Extend)
τ -{ρ}-> κ ≤ τ -{ρ'.ρ}-> κ

(Permute)

(Erase)
D ⊢ τ -{(E:Abs).ρ}-> κ ≤ τ -{ρ}-> κ

D ⊢ E # ρ

Is it sound to discard the permission
to install a handler?

τ -{ρ1}-> κ ≤ τ -{ρ2}-> κ

ρ1 is a permutation of ρ2

A concise and powerful rule that allows a row
to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.

Because entries are supposedly distinct,
their order in a row is not important.

The Interesting Bits

Subtyping Rules.

(Erase)
D ⊢ τ -{(E:Abs).ρ}-> κ ≤ τ -{ρ}-> κ

D ⊢ E # ρ

Is it sound to discard the permission
to install a handler?

(Extend)
τ -{ρ}-> κ ≤ τ -{ρ'.ρ}-> κ

(Permute)
τ -{ρ1}-> κ ≤ τ -{ρ2}-> κ

ρ1 is a permutation of ρ2

A concise and powerful rule that allows a row
to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.

Because entries are supposedly distinct,
their order in a row is not important.

The Interesting Bits

Subtyping Rules.

(Erase)
D ⊢ τ -{(E:Abs).ρ}-> κ ≤ τ -{ρ}-> κ

D ⊢ E # ρ
No! Removing E also removes the
assumption that E is distinct from
names in ρ.

(Extend)
τ -{ρ}-> κ ≤ τ -{ρ'.ρ}-> κ

(Permute)
τ -{ρ1}-> κ ≤ τ -{ρ2}-> κ

ρ1 is a permutation of ρ2

A concise and powerful rule that allows a row
to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.

Because entries are supposedly distinct,
their order in a row is not important.

Is it sound to discard the permission
to install a handler?

The Interesting Bits

Subtyping Rules.

(Erase)
D ⊢ τ -{(E:Abs).ρ}-> κ ≤ τ -{ρ}-> κ

D ⊢ E # ρ D is a disjointness context, it stores pairs
of distinct names.

(Extend)
τ -{ρ}-> κ ≤ τ -{ρ'⋅ρ}-> κ

A concise and powerful rule that allows a row
to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.

(Permute)
τ -{ρ1}-> κ ≤ τ -{ρ2}-> κ

ρ1 is a permutation of ρ2Because entries are supposedly distinct,
their order in a row is not important.

Conclusion

Conclusion

Semantics of Handlers.

● Through the example of counter,
 we argued that the standard semantics of global effect names is unsatisfactory.

● We explored the panorama of semantics of handlers known in the literature:

1. Effect coercions
2. Dynamic allocation of effect labels
3. Lexically scoped handlers

And we argued in favor of the second option, which is currently adopted by OCaml 5.

Conclusion

Type Systems.

● We introduced Tes, a type system for effect handlers and dynamic labels.

● In doing so we had faced a name-collision problem: effect names might collide.

● Our key idea is to modify the usual reading of an arrow type
 f : τ -{ρ}-> κ
 To include the absence of name collisions in ρ as a precondition to the evaluation of f.

● We showed how powerful typing and subtyping rules can then be succinctly stated.

Metatheory.
● We have omitted the metatheory of Tes from this talk. Check out the paper to know:

1. What are the guarantees of Tes. (No unhandled effects.)

2. How we articulate its proof of soundness.

3. What is the relation between effect polymorphism and absence of accidental handling.

Questions

Proof of Soundness

Γ ⊢ e : ρ : τ ⟹ Γ ⊨ e : ρ : τ

Our proof of soundness follows the semantic approach, which consists of three steps:

⊨ e : <> : unit ⟹

3. Show that the translation implies the system’s desired guarantees.

2. Prove that, if a typing judgment is derivable, then its translation holds.

1. Translate typing judgments as specifications written in a certain program logic.
 (In our case, we choose TesLogic, a Separation Logic with support for handlers.)

Pictorially,

“e is well-typed” “e can be verified;
 it satisfies a specification”

“e is safe:
 every operation, including an effect,
 is well-defined”

Effect Parametricity & Absence of Accidental Handling

The literature suggests that parametricity of effect polymorphism
 is equivalent to the absence of accidental handling.

Parametricity of Effect Polymorphism. Absence of Accidental Handling.

System S enjoys parametric effect polymorphism if

∃ model of S

1. A logic (prop, ∀, ∃, ∧, ∨, …)
2. An interpretation of types
 𝕍 : …→ type → (val → prop)
3. A semantic domain of rows
 SRow
…

such that

𝕍⟦∀θ. τ⟧η = ∀E : SRow. 𝕍⟦τ⟧

System S enjoys absence of accidental handling
 if Zhang and Myers’s equivalence laws hold.

In particular,

ff : ∀θ. (int -{θ}-> int) -{θ}-> int

let effect E in
match ff (fun x -> perform (E x)) with
| effect (E x) k -> continue k (2*x)
| y -> y

ff (fun x -> 2*x) ≃

η{θ→E}

Effect Parametricity & Absence of Accidental Handling

Let Tes+TryFinally be Tes extended with a try-finally construct, try e finally f,
 which executes the finally branch f every time control leaves e.

The system Tes+TryFinally enjoys parametric effect polymorphism,
 yet it does not enjoy absence of accidental handling.

let effect E in
match ff (fun x -> perform (E x)) with
| effect (E x) k -> continue k (2*x)
| y -> y

ff (fun x -> 2*x) ≄

let ff : ∀θ. (int -{θ}-> int) -{θ}-> int =
 fun f ->
 let r = ref 0 in
 try let _ = f 0 in !r finally (r := !r + 1)

0 1

Handler Rule

Γ, x:ι, k:κ-{ρ}->τ' ⊢ h : (E:Abs).ρ : τ'

The Interesting Bits

Γ ⊢ : (E:Abs).ρ : τ'

Typing Rules.
Γ ⊢ e : (E:ι=>κ).ρ : τ

(Handler)
match e with
| effect (E x) k -> h
| y -> r

Reading.
 “Given the permission to install a handler E:Abs, the handlee e is allowed to perform E according
 to an arbitrary signature E:ι=>κ, provided that
 (1) r is well-typed,
 (2) h is well-typed w.r.t this signature.”

Γ, y:τ ⊢ r : (E:Abs).ρ : τ'

Type-Checking counter

Type-Checking counter

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

: <> :⊢ counter
∀α β γ.
 (∀θ1. (α -{θ1}-> β) -{θ1}-> γ) ->
 (∀θ2. (α -{θ2}-> β) -{θ2}-> (γ * int))

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

∀α β γ.
 (∀θ1. (α -{θ1}-> β) -{θ1}-> γ) ->
 (∀θ2. (α -{θ2}-> β) -{θ2}-> (γ * int))

: <> :⊢

Type-Checking counter

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

α, β, γ,
ff : ∀θ1.(α-{θ1}->β)-{θ1}->γ

∀θ2. (α -{θ2}-> β) -{θ2}-> (γ * int): <> :⊢

Type-Checking counter

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

α, β, γ,
ff : ∀θ1.(α-{θ1}->β)-{θ1}->γ,
θ2,
f : α-{θ2}->β

⊢

Type-Checking counter

: θ2 ; γ * int

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

α, β, γ,
ff : ∀θ1.(α-{θ1}->β)-{θ1}->γ,
θ2,
f : α-{θ2}->β,
calls : int ref

γ * int: θ2 ;⊢

Type-Checking counter

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

: (Tick:Abs)⋅θ2 ; γ * int

It is sound to assume that Tick does not collide with θ2:
 f does not perform Tick effects.

Type-Checking counter

α, β, γ,
ff : ∀θ1.(α-{θ1}->β)-{θ1}->γ,
θ2,
f : α-{θ2}->β,
calls : int ref

⊢

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

: (Tick:unit=>unit)⋅θ2 ; γ

Specialize the type of ff with
 θ1 := (Tick:unit=>unit)⋅θ2

Type-Checking counter

α, β, γ,
ff : ∀θ1.(α-{θ1}->β)-{θ1}->γ,
θ2,
f : α-{θ2}->β,
calls : int ref

⊢

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

: <> ; α -{(Tick:unit=>unit)⋅θ2}-> β

f : α-{θ2}->β

≤
f : α-{(Tick:unit=>unit)⋅θ2}->β

Type-Checking counter

α, β, γ,
ff : ∀θ1.(α-{θ1}->β)-{θ1}->γ,
θ2,
f : α-{θ2}->β,
calls : int ref

⊢

Type-Checking counter

let counter ff = fun f ->
 let calls = ref 0 in
 let open struct effect Tick : unit end in
 match ff (fun x -> perform Tick; f x) with
 | effect Tick k ->
 calls := !calls + 1; continue k ()
 | y -> (y, !calls)

∀α β γ.
 (∀θ1. (α -{θ1}-> β) -{θ1}-> γ) ->
 (∀θ2. (α -{θ2}-> β) -{θ2}-> (γ * int))

: <> :⊢ counter

