A Type System for Effect Handlers and Dynamic Labels

Overview

Type Systems. In this paper, we propose Tes, a type system for effect handlers.

Semantics of Handlers. We also explore the different choices in the design space of handlers.
We argue in favor of one particular interface for programming with handlers.

Semantics of Handlers

Effect Handlers - 101

Effect handlers generalize exception handlers:
Whereas raising an exception discards the computation, performing an effect suspends the computation, which is reified as a continuation.

```
exception Division_by_zero
let ( / ) x y =
    if y = 0 then raise Division_by_zero
    else Int.div x y
let _ =
    match 1 + (1 / 0) with
    | exception Division_by_zero -> 0
        y -> y
```

```
effect Division_by_zero : int
let ( / ) x y =
    if y = 0 then perform Division_by_zero
    else Int.div x y
let _ =
    match 1 + (1 / 0) with
    | effect Division_by_zero k ->
        continue k 0
        y -> y
```


Effect Handlers - 101

Effect handlers generalize exception handlers:
Whereas raising an exception discards the computation, performing an effect suspends the computation, which is reified as a continuation.

```
exception Division_by_zero
let ( / ) x y =
    if y = 0 then raise Division_by_zero
    else Int.div x y
```

let _ =
match 1 + (1 / 0) with
| exception Division_by_zero -> 0
y \rightarrow y

```
effect Division_by_zero : int
let ( / ) x y =
    if y = 0 then perform Division_by_zero
    else Int.div x y
let _ =
    match 1 + (1 / 0) with
    | effect Division_by_zero k ->
        continue k 0
        y -> y
```

-: int = 0

Effect Handlers - 101

Effect handlers generalize exception handlers:
Whereas raising an exception discards the computation, performing an effect suspends the computation, which is reified as a continuation.

```
exception Division_by_zero
let ( / ) x y =
    if y = 0 then raise Division_by_zero
    else Int.div x y
```

let _ =
match 1 + (1 / 0) with
| exception Division_by_zero -> 0
y \rightarrow y

```
effect Division_by_zero : int
let ( / ) x y =
    if y = 0 then perform Division_by_zero
    else Int.div x y
let _ =
    match 1 + (1 / 0) with
    | effect Division_by_zero k ->
        continue k 0
        y -> y
```

 -: int = 1

Effect Names

An effect name specifies which effect is handled by a handler.
In the previous example, the effect name is Division_by_zero.
It is globally defined: its scope spans over the entire program.

```
effect Division_by_zero : int
let
    if y = 0 then perform Division_by_zero
    else Int.div x y
let
    match 1 + (1 / 0) with
    | effect Division_by_zero k ->
        continue k 0
        y -> y
```


Effect Names

An effect name specifies which effect is handled by a handler.
In the previous example, the effect name is Division_by_zero.
It is globally defined: its scope spans over the entire program.

> We also argue in favor of locally defined names.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```


Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    y -> (y, !calls)
```

Allocate a memory cell named calls.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
            calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```

Apply ff to a modified version of f that performs Tick when called.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    y -> (y, !calls)
```

Increment calls by one when Tick is performed.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```

Read the state of calls at the end.

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```


Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```

This implementation however is incorrect!

Effect Names

Specification. The function counter counts the number of times ff calls its argument.

```
effect Tick : unit
let counter ff f =
    let calls = ref 0 in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```

There are two problems with this implementation of counter:

1. The function ff might intercept Tick effects.
2. The function f might perform Tick effects.

Panorama of Semantics of Handlers

There are at least three approaches to overcome the issue that f might perform Tick effects:

1. Effect Coercions

Allow an effect to bypass its innermost handler.
2. Dynamic Allocation of Effect Labels

Allows an effect to be locally defined.
3. Lexically Scoped Handlers

Combine effect allocation and handler into a single operation, a lexically scoped handler.

Effect Coercions
(K) Koka

Frank
Dynamic Allocation of Effect Labels

OCaml EFF

Lexically Scoped Handlers

Scala + Effekt

1. Effect Coercions

Koka's mask allows an effect to bypass its innermost handler.

```
effect ctl tick() : ()
fun counter(ff : forall <e> (a -> e b) -> e c)
    : (forall <e> (a -> e b) -> e (c, int))
    fn(f) {
    val comp =
        with ctl tick() {fn(n) {resume(())(n + 1)}}
        val y =
            ff (fn(x) {tick(); mask<tick>(fn() {f(x)})})
        fn(n) {(y, n)}
    comp(0)
    }

\section*{1. Effect Coercions}

Koka's mask allows an effect to bypass its innermost handler.
```

effect ctl tick() : ()
fun counter(ff : forall <e> (a -> e b) -> e c)
: (forall <e> (a -> e b) -> e (c, int))
fn(f) {
val comp =
with ctl tick() {fn(n) {resume(())(n + 1)}}
val y =
ff (fn(x) {tick(); mask<tick>(fn() {f(x)})})
fn(n) {(y, n)}
comp(0)
}

```

\section*{2. Dynamic Allocation of Effect Labels}

In OCaml, an effect declaration binds an effect name to a fresh effect label. Its scope can be either global or local.
```

effect Tick : unit
let counter ff f =
let calls = ref 0 in
match ff (fun x -> perform Tick; f x) with
| effect Tick k ->
calls := !calls + 1; continue k ()
| y -> (y, !calls)

2. Dynamic Allocation of Effect Labels

In OCaml, an effect declaration binds an effect name to a fresh effect label. Its scope can be either global or local.

```
let counter ff f =
    let calls = ref 0 in
    let effect Tick : unit in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```


2. Dynamic Allocation of Effect Labels

In OCaml, an effect declaration binds an effect name to a fresh effect label.
Its scope can be either global or local.

```
let counter ff f =
    let calls = ref 0 in
    let effect Tick : unit in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```

Convenience. It is the standard semantics of OCaml and it is similar to the approach used for exceptions in OCaml and ML.

Limitation. No type system (yet!). Devising such a system is the topic of this paper.

3. Lexically Scoped Handlers

The idiom of allocating an effect and immediately installing its handler is known as a lexically scoped handler.
The Scala library Effekt is restricted to this flavor of handler.

```
def counter[A,B,C](ff: [E] => (A => B / E) => C / E)
    : ([E] => (A => B / E) => (C, Int) / E) =
    [E] => (f: A => B / E) =>
        var calls = 0
        handle {(scope : Scope[_, E]) =>
        val t = new Tick {
            type effect = scope.effect
            def tick() = scope.switch {resume =>
                calls = calls + 1; resume(())}
        }
        {ff(x => t.tick() andThen f(x))} map {y => (y, calls)}
    }

\section*{3. Lexically Scoped Handlers}

The idiom of allocating an effect and immediately installing its handler is known as a lexically scoped handler.
The Scala library Effekt is restricted to this flavor of handler.

```

 [E] => (f: A => B / E) =>
 var calls = 0
 handle {(scope : Scope[_, E]) =>
 val t = new Tick {
 type effect = scope.effect
 def tick() = scope.switch {resume =>
 calls = calls + 1; resume(())}
 }
 {ff(x => t.tick() andThen f(x))} map {y => (y, calls)}
 }

3. Lexically Scoped Handlers

Convenience. There are multiple type systems for lexically scoped handlers.
Limitation. Lexically scoped handlers impose a "capability-passing" style.

```
def drunkFlip(amb: Amb, exc: Exc) =
    for {
        caught \leftarrow amb.flip()
        heads \leftarrow if (caught) amb.flip() else exc.raise("We dropped the coin")
    } yield if (heads) "Heads" else "Tails"
```

> EScala + Effekt

This Paper

We argue in favor of the dynamic allocation of effect labels.
And we introduce Tes,
a type system for effect handlers and dynamic labels.

In the next part of the talk, I am going to show

Dynamic Allocation of Effect Labels

OCaml EFF

1. What is the standard approach in systems for effects.
2. What is the challenge in devising a system for dynamic labels.
3. What is the key idea of Tes.
4. What are the interesting aspects of the system, typing and subtyping rules.

Tes

Syntax of Types

Tes follows the standard approach of type systems with support for effects: to annotate an arrow type with a row.
In Tes, a row describes the effects that a function might perform or handle.

$$
\begin{aligned}
& \tau, \mathbf{K}:= \\
& \text { т - \{ } \boldsymbol{\rho}\}->\text { (Annotated Arrow) } \\
& \forall \boldsymbol{*} . \tau \\
& \forall \theta . \tau \\
& \text { p : : = <> } \\
& \text { | (} E: \mathbf{\tau}=>\mathbf{k}) . \rho \\
& \text { (} E: \text { Abs). } \rho \\
& \boldsymbol{\theta} \boldsymbol{\rho} \\
& \text { (Effect Polymorphism) } \\
& \text { (Empty Row) } \\
& \text { (Effect Signature) } \\
& \text { (Absence Signature) } \\
& \text { (Row Variable) }
\end{aligned}
$$

Example

The function filter yields the elements of x s that satisfy the function p.

```
let rec filter xs p =
    match xs with
    | [] -> ()
    x :: xs ->
        (if p x then perform (Yield x));
        filter xs p
```

```
filter : \forallа. \forall0.
    \alpha list ->
    (\alpha -{0}-> bool) -{Y[\alpha].0}->
    unit
    where }\boldsymbol{V}[\boldsymbol{\alpha}]= Yield:\alpha=>uni
```


Reading.

"For every set of effects θ, if p performs effects in θ, then the expression filter xs p performs effects in $Y[\boldsymbol{\alpha}] . \theta$."

Example

The function reassemble installs a handler that accumulates the elements yielded by prog.

```
let reassemble prog =
    match prog() with
    | effect (Yield x) k ->
        x :: continue k ()
    | () -> []
```

```
reassemble : \(\boldsymbol{\forall \boldsymbol { a } . \boldsymbol { \forall } \theta \text { . }}\)
    (unit \(-\{Y[\boldsymbol{\alpha}] . \theta\}->\) unit) \(-\left\{Y^{\boldsymbol{\dagger}} . \theta\right\}->\)
    a list
    where \(\boldsymbol{Y}^{\boldsymbol{\dagger}}=\) Yield:Abs
    and \(Y[\boldsymbol{\alpha}]=\) Yield: \(\boldsymbol{\alpha}=>\) unit
```


Example

The function reassemble installs a handler that accumulates the elements yielded by prog.

```
let reassemble prog =
    match prog() with
    | effect (Yield x) k ->
        x :: continue k ()
    | () -> []
```

```
reassemble : \forall\boldsymbol{|}\boldsymbol{\forall0}.
```



```
    \alpha list
    where }\mp@subsup{\boldsymbol{Y}}{}{\boldsymbol{\dagger}}=\mp@code{Yield:Abs
    and }\boldsymbol{Y}[\boldsymbol{\alpha}]=\mathrm{ Yield:a=>unit
```

By instantiating α with int and θ with <> (the empty row), reassemble can be used to handle the following application of filter:

```
reassemble (fun () -> filter [0; 1; 2] (fun x -> x mod 2 = 0))
```


Example

The function reassemble installs a handler that accumulates the elements yielded by prog.

```
let reassemble prog =
    match prog() with
    | effect (Yield x) k ->
        x :: continue k ()
    | () -> []
```

```
reassemble : \forall\boldsymbol{|}\boldsymbol{\forall0}.
    (unit -{Y[\alpha].0}-> unit) -{ ('\dagger.0}->
    \alpha list
    where }\mp@subsup{\boldsymbol{Y}}{}{\boldsymbol{\dagger}}=\mp@code{Yield:Abs
    and }\boldsymbol{Y}[\boldsymbol{\alpha}]=\mathrm{ Yield:a=>unit
```

By instantiating α with int and θ with <> (the empty row), reassemble can be used to handle the following application of filter:

```
reassemble (fun () -> filter [0; 1; 2] (fun x -> x mod 2 = 0))
```

-: int list = [0; 2]

A Problem with Name Collisions?

The function reassemble installs a handler that accumulates the elements yielded by prog.

```
let reassemble prog =
    match prog() with
    | effect (Yield x) k ->
        x :: continue k ()
```

```
reassemble : \forall\boldsymbol{|}\boldsymbol{\forall0.}
    (unit -{Y[\alpha].0}-> unit) -{ (Y'.0}->
    \alpha list
    where }\mp@subsup{\boldsymbol{Y}}{}{\boldsymbol{\dagger}}=\mp@code{Yield:Abs
    and }Y[\boldsymbol{\alpha}]= Yield:\alpha=>uni
```

Wait! Can θ be instantiated to $Y\left[_\right]$?
In other words, can the substitution of θ introduce a name collision?

A Problem with Name Collisions?

The function reassemble installs a handler that accumulates the elements yielded by prog.

```
let reassemble prog =
    match prog() with
    | effect (Yield x) k ->
        x :: continue k ()
    | () -> []
```

```
reassemble : \forall\boldsymbol{|}\boldsymbol{\forall0}.
    (unit -{Y[\alpha].0}-> unit) -{ (Y'.0}->
    \alpha list
    where }\mp@subsup{\boldsymbol{Y}}{}{\boldsymbol{\dagger}}=\mp@code{Yield:Abs
    and }\boldsymbol{Y}[\boldsymbol{\alpha}]=\mathrm{ Yield:a=>unit
```

Wait! Can θ be instantiated to $Y\left[_\right]$?
In other words, can the substitution of θ introduce a name collision?

```
let unsafe : unit -{ 'Y}
    fun () -> reassemble (fun () -> perform (Yield 0); perform (Yield ()))
```


A Problem with Name Collisions?

The function reassemble installs a handler that accumulates the elements yielded by prog.

```
let reassemble prog =
    match prog() with
    | effect (Yield x) k ->
        x :: continue k ()
    | () -> []
```

```
reassemble : \forall\boldsymbol{|}\boldsymbol{\forall0}.
    (unit -{Y[\alpha].0}-> unit) -{ (Y'.0}->
    \alpha list
    where }\mp@subsup{\boldsymbol{Y}}{}{\boldsymbol{\dagger}}=\mp@code{Yield:Abs
    and }\boldsymbol{Y}[\boldsymbol{\alpha}]=\mathrm{ Yield:a=>unit
```

Wait! Can θ be instantiated to $Y\left[_\right]$?
In other words, can the substitution of θ introduce a name collision?

```
let unsafe : unit -{ 'Y}
    fun () -> reassemble (fun () -> perform (Yield 0); perform (Yield ()))
```

Our answer is Yes. The function unsafe, for instance, is well-typed!

The Key Idea

Key idea. To guard a function type with the assumption that names are distinct.

More specifically, we change the usual reading of an arrow type f : т -\{p\}-> k
This type now adds the absence of name collisions in ρ as a precondition to the evaluation of f.

The Key Idea

Key idea. To guard a function type with the assumption that names are distinct.

More specifically, we change the usual reading of an arrow type

$$
f: \tau-\{\rho\}->k
$$

This type now adds the absence of name collisions in ρ as a precondition to the evaluation of f.

New Reading.
"If the names in $\boldsymbol{\rho}$ are distinct, then, when applied to a value of type $\boldsymbol{\tau}$, the function f
(1) returns a value of type $\mathbf{~}$ (or diverges);
(2) and, in the meantime, might perform one or more of the effects in $\boldsymbol{\rho}$."

The Key Idea

Key idea. To guard a function type with the assumption that names are distinct.
unsafe : unit $-\left\{Y^{\dagger} . Y[\right.$ unit $\left.]\right\}->$ int list

```
let unsafe() =
    reassemble (fun () ->
        perform (Yield 0); perform (Yield ())
    )
```


The Key Idea

Key idea. To guard a function type with the assumption that names are distinct.
unsafe : unit $-\left\{Y^{\dagger} . Y[\right.$ unit $\left.]\right\}->$ int list \simeq empty \rightarrow int list

```
let unsafe() =
    reassemble (fun () ->
        perform (Yield 0); perform (Yield ())
    )
```

The type empty has no inhabitant, thus unsafe cannot be called.

The Interesting Bits

Typing Judgment.

```
\Gamma \vdash e : \rho: \tau
```

Reading.
"Under the assumption that names in $\mathbf{\rho}$ are distinct, the evaluation of the expression e
(1) returns a value of type $\boldsymbol{\tau}$ (or diverges);
(2) and, in the meantime, might perform one or more of the effects in $\boldsymbol{\rho}$."

The Interesting Bits

Typing Rules.

```
\Gamma\vdashe :(E:Abs).\rho: \tau
```

Reading (Bottom-Up).
"The allocation of the effect E
(1) allows e to install a handler for this effect,
(2) allows e to assume that E is distinct from names in ρ."

The Interesting Bits

Subtyping Rules.

$\boldsymbol{\tau}-\{\rho\}->\mathbf{k} \leq \boldsymbol{\tau}-\left\{\rho^{\prime} . \rho\right\}->\mathbf{k}$	A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.	

Because entries are supposedly distinct, their order in a row is not important.
$\frac{\rho_{1} \text { is a permutation of } \rho_{2}}{\boldsymbol{\tau}-\left\{\rho_{1}\right\}->\mathbf{k} \leq \boldsymbol{\tau}-\left\{\rho_{2}\right\}->\mathbf{k}}$ (Permute)

Is it sound to discard the permission to install a handler?

$$
\tau-\{(E: A b s) \cdot \rho\}->k \leq \tau-\{\rho\}->k
$$

The Interesting Bits

Subtyping Rules.

$\boldsymbol{\tau}-\{\rho\}->\mathbf{k} \leq \boldsymbol{\tau}-\left\{\rho^{\prime} . \rho\right\}->\mathbf{k}$	A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.	

Because entries are supposedly distinct, their order in a row is not important.
ρ_{1} is a permutation of ρ_{2}

Is it sound to discard the permission
to install a handler?

The Interesting Bits

Subtyping Rules.

$\tau-\{\rho\}->\mathrm{k} \leq \tau^{\prime}-\left\{\rho^{\prime} . \rho\right\}->\mathrm{k}$	A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.	

Because entries are supposedly distinct, their order in a row is not important.
$\frac{\rho_{1} \text { is a permutation of } \rho_{2}}{\tau-\left\{\rho_{1}\right\}->\boldsymbol{k} \leq \boldsymbol{\tau}-\left\{\rho_{2}\right\}->\kappa}$ (Permute)

Is it sound to discard the permission to install a handler?

The Interesting Bits

Subtyping Rules.

$\tau-\{\rho\}->\mathrm{k} \leq \tau^{\prime}-\left\{\rho^{\prime} . \rho\right\}->\mathrm{k}$	A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.	

Because entries are supposedly distinct, their order in a row is not important.

Is it sound to discard the permission to install a handler?

The Interesting Bits

Subtyping Rules.

$\tau-\{\rho\}->\mathrm{k} \leq \mathrm{\tau}-\left\{\rho^{\prime} . \rho\right\}->\mathrm{k}$	A concise and powerful rule that allows a row to be (arbitrarily) extended with new entries.
If a collision is introduced, the type is unusable.	

Because entries are supposedly distinct, their order in a row is not important.
ρ_{1} is a permutation of ρ_{2}

Is it sound to discard the permission to install a handler?
(Erase) No! Removing E also removes the assumption that E is distinct from names in ρ.

The Interesting Bits

Subtyping Rules.

Because entries are supposedly distinct, their order in a row is not important.

Conclusion

Conclusion

Semantics of Handlers.

- Through the example of counter, we argued that the standard semantics of global effect names is unsatisfactory.
- We explored the panorama of semantics of handlers known in the literature:

1. Effect coercions
2. Dynamic allocation of effect labels
3. Lexically scoped handlers

And we argued in favor of the second option, which is currently adopted by OCaml 5 .

Conclusion

Type Systems.

- We introduced Tes, a type system for effect handlers and dynamic labels.
- In doing so we had faced a name-collision problem: effect names might collide.
- Our key idea is to modify the usual reading of an arrow type

$$
f: \tau-\{\rho\}->k
$$

To include the absence of name collisions in $\boldsymbol{\rho}$ as a precondition to the evaluation of f.

- We showed how powerful typing and subtyping rules can then be succinctly stated.

Metatheory.

- We have omitted the metatheory of Tes from this talk. Check out the paper to know:

1. What are the guarantees of Tes. (No unhandled effects.)
2. How we articulate its proof of soundness.
3. What is the relation between effect polymorphism and absence of accidental handling.

Questions

Proof of Soundness

Our proof of soundness follows the semantic approach, which consists of three steps:

1. Translate typing judgments as specifications written in a certain program logic.
(In our case, we choose TesLogic, a Separation Logic with support for handlers.)
2. Prove that, if a typing judgment is derivable, then its translation holds.
3. Show that the translation implies the system's desired guarantees.

Pictorially,

$$
\begin{array}{lll}
\Gamma \vdash \mathrm{e}: \rho: \tau & \Longrightarrow \quad \Gamma \vDash \mathrm{e}: \rho: \mathbf{\tau} \\
\text { "e is well-typed" }
\end{array}
$$

Effect Parametricity \& Absence of Accidental Handling

The literature suggests that parametricity of effect polymorphism
is equivalent to the absence of accidental handling.

Parametricity of Effect Polymorphism.

System S enjoys parametric effect polymorphism if

such that

$$
\mathbb{V} \llbracket \forall \theta \cdot \tau \rrbracket_{\boldsymbol{\eta}}=\forall E: S R o w . \mathbb{V} \llbracket \tau \rrbracket_{\boldsymbol{n}\{\theta \rightarrow E\}}
$$

Absence of Accidental Handling.

System S enjoys absence of accidental handling if Zhang and Myers's equivalence laws hold.

In particular,

```
    ff : \forall0.(int -{0}-> int) -{0}-> int
ff (fun x -> 2*x) =
    let effect E in
    match ff (fun x -> perform (E x)) with
    | effect (E x) k -> continue k (2*x)
    y -> y
```


Effect Parametricity \& Absence of Accidental Handling

Let Tes+TryFinally be Tes extended with a try-finally construct, try \boldsymbol{e} finally \boldsymbol{f}, which executes the finally branch \boldsymbol{f} every time control leaves \boldsymbol{e}.

The system Tes+TryFinally enjoys parametric effect polymorphism, yet it does not enjoy absence of accidental handling.

```
            let ff : \forall0.(int -{0}-> int) -{0}-> int =
        fun f ->
            let r = ref 0 in
                try let _ = f 0 in !r finally (r := !r + 1)
                    ff (fun x >> 2*x) # l l}\begin{array}{l}{\mathrm{ let effect E in match ff (fun x >> perform (E x)) with}}\\{|\mathrm{ effect (E x) k >> continue k (2*x)}}\\{|>>y}
```


Handler Rule

The Interesting Bits

Typing Rules.

$$
\begin{aligned}
& \boldsymbol{\Gamma} \vdash \mathrm{e}:(\mathrm{E}: \mathbf{\imath}=>\mathbf{k}) . \boldsymbol{\rho}: \mathbf{\tau} \\
& \boldsymbol{\Gamma}, \mathrm{y}: \boldsymbol{\tau} \vdash \boldsymbol{r}:(\mathrm{E}: \mathbf{A b s}) . \boldsymbol{\rho}: \boldsymbol{\tau}^{\prime} \\
& \boldsymbol{\Gamma}, x: \mathbf{\imath}, k: \mathbf{k}-\{\boldsymbol{\rho}\}->\boldsymbol{\tau}{ }^{\prime} \vdash \boldsymbol{h}:(E: A b s) . \boldsymbol{\rho}: \boldsymbol{\tau}^{\prime} \\
& \boldsymbol{\Gamma} \vdash \left\lvert\, \begin{array}{l}
\text { match e with } \\
\left\lvert\, \begin{array}{l}
\text { effect } \\
y \rightarrow \boldsymbol{r}
\end{array}(E \times) k \rightarrow \boldsymbol{h} \quad\right.:(E: A b s) . \boldsymbol{\rho}: \boldsymbol{\tau}^{\prime} \\
\hline
\end{array}\right. \\
& \text { (Handler) }
\end{aligned}
$$

Reading.
"Given the permission to install a handler E : Abs, the handlee e is allowed to perform E according

(1) r is well-typed,
(2) \boldsymbol{h} is well-typed w.r.t this signature."

Type-Checking counter

Type-Checking counter

$\forall \alpha \beta \gamma$.
\vdash counter : <> :

$$
\begin{array}{lll}
\left(\forall \theta_{1} \cdot\left(\alpha-\left\{\theta_{1}\right\}->\beta\right)\right. & -\left\{\theta_{1}\right\}-> & y)-> \\
\left(\forall \theta_{2} \cdot\left(\alpha-\left\{\theta_{2}\right\}->\beta\right)\right. & -\left\{\theta_{2}\right\}-> & (y * i n t))
\end{array}
$$

```
let counter ff = fun f ->
    let calls = ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```


Type-Checking counter


```
let counter \(\mathrm{ff}=\) fun \(\mathrm{f} \rightarrow\)
    let calls \(=\) ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun \(x\)-> perform Tick; \(f x\) ) with
    | effect Tick k ->
        calls := !calls +1 ; continue \(k()\)
    | y -> (y, !calls)
```


Type-Checking counter

$$
\begin{aligned}
& \alpha, \beta, \gamma, \\
& f f: \forall \theta_{1} \cdot\left(\alpha-\left\{\theta_{1}\right\}>\beta\right)-\left\{\theta_{1}\right\}->\gamma
\end{aligned} \vdash \text { <>: } \forall \theta_{2} \cdot\left(\alpha-\left\{\theta_{2}\right\}->\beta\right)-\left\{\theta_{2}\right\}->\text { (} \gamma \text { * int) }
$$

```
let counter ff = fun f ->
    let calls = ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y ->> (y, !calls)
```


Type-Checking counter

$$
\begin{aligned}
& \alpha, \beta, \gamma, \\
& f f: \forall \theta_{1} \cdot\left(\alpha-\left\{\theta_{1}\right\}>\beta\right)-\left\{\theta_{1}\right\}->\gamma, \quad \square: \theta_{2} ; \gamma * \text { int } \\
& \theta_{2}, \quad \square: \alpha-\left\{\theta_{2}\right\}->\beta \\
& f
\end{aligned}
$$

```
let counter ff = fun f ->
    let calls = ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun x \(\rightarrow\) perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1 ; continue \(k\) ()
    | y \(\rightarrow\) ( y , !calls)
```


Type-Checking counter

$$
\begin{aligned}
& \alpha, \beta, Y, \\
& f f: \forall \theta_{1} \cdot\left(\alpha-\left\{\theta_{1}\right\}->\beta\right)-\left\{\theta_{1}\right\}->v, \\
& \theta_{2}, \\
& f^{\prime}: \alpha-\left\{\theta_{2}\right\}->\beta, \\
& \text { calls : int ref }
\end{aligned}
$$

```
let counter \(\mathrm{ff}=\mathrm{fun} \mathrm{f}\)->
    let calls = ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun x \(\rightarrow\) perform Tick; f x) with
    | effect Tick k \(\rightarrow\)
        calls := !calls + 1 ; continue \(k\) ()
    | y \(\rightarrow\) ( y , !calls)
```


Type-Checking counter

$$
\begin{aligned}
& \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{Y}, \\
& \text { ff }: \forall \theta_{1} \cdot\left(\alpha-\left\{\theta_{1}\right\}->\beta\right)-\left\{\theta_{1}\right\}->\gamma, \\
& \theta_{2}, \\
& f^{2}: \alpha-\left\{\theta_{2}\right\}->\beta, \\
& \text { calls }: \quad \text { int ref }
\end{aligned}
$$

```
let counter ff = fun f ->
    let calls = ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y ->> (y, !calls)
```


Type-Checking counter

$$
\begin{aligned}
& \alpha, \beta, \gamma, \\
& f f: \forall \theta_{1} \cdot\left(\alpha-\left\{\theta_{1}\right\}->\beta\right)-\left\{\theta_{1}\right\}->v, \\
& \theta_{2}, \quad \square: \alpha-\left\{\theta_{2}\right\}->\beta, \\
& \text { falls : int ref }
\end{aligned}
$$

```
let counter ff = fun f ->
    let calls = ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun x \(\rightarrow\) perform Tick; f x) with
    | effect Tick k ->
            calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```


Type-Checking counter

Type-Checking counter

$\forall \alpha \beta \gamma$.
\vdash counter : <> :

$$
\begin{array}{lll}
\left(\forall \theta_{1} \cdot\left(\alpha-\left\{\theta_{1}\right\}->\beta\right)\right. & -\left\{\theta_{1}\right\}-> & y)-> \\
\left(\forall \theta_{2} \cdot\left(\alpha-\left\{\theta_{2}\right\}->\beta\right)\right. & -\left\{\theta_{2}\right\}-> & (y * i n t))
\end{array}
$$

```
let counter ff = fun f ->
    let calls = ref 0 in
    let open struct effect Tick : unit end in
    match ff (fun x -> perform Tick; f x) with
    | effect Tick k ->
        calls := !calls + 1; continue k ()
    | y -> (y, !calls)
```

