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Abstract This thesis addresses the problem of reasoning about programs that modify
the heap and alter the control flow through effect handlers, a novel programming construct
that provides a relatively simple interface to delimited control. This ability to manipulate
the control flow is extremely powerful: many programming features – such as asynchronous
programming and coroutines – that come as built-in packages of traditional programming
languages can be expressed in terms of effect handlers. The status of effect handlers as a
modular and expressive programming construct is attested by the development of the
OCaml programming language, which will have support for handlers in its next major
release. This event makes the problem of unveiling the logical principles that govern effect
handlers even more pressing. In particular, how to reason abstractly about a continuation,
rather than thinking concretely as a fragment of the stack? Moreover, can we reason
separately about a program that performs effects and a program that handles these effects?
This thesis answers these questions by introducing Hazel, a Separation Logic for effect
handlers, built as an extension of Iris. Hazel introduces a novel specification language by
means of which one can describe the behavior of programs, including continuations. The
logic allows one to compose specifications in a modular fashion through familiar reasoning
rules, such as the bind rule and the frame rule, and novel ones, such as the reasoning
rules for handling and performing effects. To assess the applicability of Hazel as a tool
to formally reason about programs, this thesis includes the verification of a number of
case studies: (1) a program that transforms a higher-order iteration method into a lazy
sequence; (2) a library for asynchronous computation; and (3) a library for reverse-mode
automatic differentiation.

This thesis also explores variants of the Hazel logic for different languages in the design
space of effect handlers. One such variant, for example, is Maze, a logic for handlers
with multi-shot continuations, i.e., continuations that can be resumed multiple times.
The applicability of Maze is assessed through the verification of a simple SAT solver
that uses multi-shot continuations to implement backtracking and through the design of
reasoning rules for the undelimited-control operators callcc and throw. Another variant
is TesLogic, a logic for a language with support for the dynamic generation of effect labels,
identifiers used by both a program that performs effects and a program that handles
effects as a way to specify the correspondence between these two programs.

The main application of TesLogic is in the study of type systems for effect handlers.
The question of devising a static type discipline for effect handlers is the subject of an
open debate, which seems to suggest a dichotomy: in order to achieve simple and strong
subtyping rules, one side argues in favor of imposing a restriction to lexically scoped
handlers, while the opposite side argues in favor of complex programming constructs, such
as effect coercions. This thesis makes a contribution to this debate by introducing Tes, a
type system that is not restricted to lexically scoped handlers, and that supports powerful
subtyping rules without the introduction of effect coercions. The soundness of Tes follows
from the interpretation of typing judgments as specifications written in TesLogic. The
results of this thesis have been formalized in the Coq Proof Assistant.

Keywords Effect handlers, Formal verification, Program logics, Separation Logic, Type
systems, Logical relations



Résumé Cette thèse s’intéresse à la conception des méthodes formelles pour raisonner
sur les programmes impératifs qui peuvent modifier le flot de contrôle à travers les
gestionnaires d’effets, une nouvelle primitive de programmation offrant une interface
relativement simple aux opérateurs de contrôle délimité. Les gestionnaires d’effets sont
extrêmement puissants en tant qu’outil de programmation: plusieurs primitives et modes
de programmation – tel que la programmation asynchrone – souvent supportés par les
langages traditionnels comme des parties intégrés de ces langages peuvent être implémentés
à l’aide des gestionnaires d’effets. La réputation des gestionnaires d’effets en tant qu’un
concept de programmation puissant et modulaire est attesté par le développement du
langage OCaml, qui aura le support pour les gestionnaires d’effets dans sa prochaine
version majeure. Cet événement fait de la recherche des principes logiques derrières les
gestionnaires d’effets un problème encore plus pressant. En particulier, comment peut-on
raisonner à propos d’une continuation de façon abstraite plutôt que de façon concrète en
tant qu’un morceau de la pile d’exécution? Comment peut-on raisonner à propos d’un
programme qui lance des effets séparément du programme qui attrape ces effets?

Cette thèse répond à ces questions en introduisant Hazel, une Logique de Séparation
pour les gestionnaires d’effets. Hazel introduit un nouveau langage de spécification
permettant la description du comportement des programmes, y compris des continuations.
Cette logique permet aussi la composition des spécifications de façon modulaire, soit
par l’application de règles de raisonnement habituelles, tel que la règle de liaison ou la
règle de l’encadrement; soit par l’application de règles nouvelles, tel que les règles pour
lancer ou capturer des effets. Pour évaluer l’applicabilité de Hazel en tant qu’outil pour le
raisonnement formel sur les programmes, cette thèse inclut la vérification des nombreux
cas d’études: (1) la conversion générique d’une méthode d’itération d’ordre supérieur vers
une séquence paresseuse; (2) une bibliothèque pour la programmation asynchrone; (3)
une bibliothèque pour la différentiation automatique en arrière. Cette thèse étudie aussi
des variantes de Hazel pour les différentes conceptions de gestionnaires d’effets. Une telle
variante est Maze, une logique pour les gestionnaires d’effets avec des continuations à
plusieurs appels (multi-shot). L’applicabilité de Maze est évaluée par (1) la vérification
d’un solveur SAT simple qui utilise des continuations pour implémenter le retour sur
trace et par (2) la conception des règles de raisonnement pour callcc et throw.

Une autre variante est TesLogic, une logique pour raisonner sur la génération dy-
namique de noms d’effets. La principale application de TesLogic est dans l’étude des
systèmes de types pour les gestionnaires d’effets. La conception d’un système de types
pour les gestionnaires d’effets est le sujet d’un débat actif: pour offrir des règles simples
et permissives de sous-typage, un coté soutient la restriction des gestionnaires d’effets
aux gestionnaires d’effets de portée lexicale, tandis que l’autre coté soutient l’adoption
des coercions d’effets. Cette thèse contribue à ce débat en introduisant Tes, un système
de types qui (1) n’est pas restreint aux gestionnaires d’effets de portée lexicale, (2)
n’introduit pas les coercions d’effets, et (3) admet des règles de sous-typage puissantes.
La sûreté de Tes est prouvée à l’aide d’une interprétation des jugements de typage en
tant que spécifications écrites en TesLogic. Les résultats de cette thèse sont formalisés
dans l’assistant de preuve Coq.

Mots clés Gestionnaire d’effets, Vérification formel, Logique de programmes, Logique
de Séparation, Système de types, Relations logiques
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Chapter 1

Introduction

1.1 Proof of programs

The problem of verifying program correctness is perhaps one of the very oldest problems
in Computer Science, as evidenced by the fact that, as early as 1949, Alan Turing was
already interested in checking large routines [Tur49, MJ84]. A routine, in the sense
studied by Turing, is a sequence of labeled instructions with jumps. Turing’s main insight
was that it is possible to split the task of verifying a routine into smaller subtasks: it is
sufficient to reason separately about “sequences of instructions without changes of control”.
His method regroups these sequences into boxes to which one must ascribe a pair of (1) a
description of the contents of the machine before control enters the box, and (2) the
relations among these contents after control exits the box in the case of a conditional
jump.

Floyd [Flo67] independently envisions a similar technique, in which every command
is annotated with two propositions: one relating the contents of program variables at
the entry of the command and another one relating these variables at the exit. These
propositions are respectively called precondition and postcondition in Hoare’s seminal
work [Hoa69], which reformulates Floyd’s ideas into an arguably simpler setting, called
Hoare logic. Hoare logic introduces the notation {P} e {Q} ascribing a precondition P and
a postcondition Q to a program: if P holds before the execution of e, then Q holds upon
termination. Hoare logic invites one to think about a program in terms of an abstract
specification of its behavior, rather than in terms of its implementation. Additionally,
Hoare logic advocates for deductive reasoning: one can establish that a program satisfies
a specification by assuming a set of axioms, that asserts the specification of the primitive
instructions of the language, and by applying rules to derive the specification of compound
programs. Hoare logic is thus an early and founding example of a program logic: a pair
of (1) a specification language, to describe the properties of programs, and (2) a set of
reasoning rules, to derive such specifications.

The method presented by Hoare [Hoa69], which applies to programs with local
mutable variables and while loops, is already sufficient to provide a principled approach
to understand and verify the following piece of code written in the Java programming
language [GJSB00]:

(* Implementation of fast exponentiation in Java. *)
public long exp (long x, long y) {

long b = x, e = y, res = 1;
while (e > 0) {res *= (e % 2 == 0 ? 1 : b); b *= b; e /= 2;}
return res;

}
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This program computes x raised to the power of y, where x and y are positive
integers with xy (strictly) less than 263, using a technique called fast exponentiation. This
technique precedes Hoare logic, but Hoare logic provides a clear and formal argument
of why this program is correct. Indeed, Hoare logic formalizes the key intuition that, to
reason about a while statement, it suffices to find a loop invariant : a relation among the
program variables that holds at the beginning and at the end of every iteration of the
loop. The loop invariant in this case is the following assertion: res · be = xy ∧ e ≥ 0. It is
easy to check that this assertion holds before entering the loop, and that this assertion
is preserved by an arbitrary iteration of the loop. Therefore, if the loop terminates, the
assertion holds, and, because e is equal to 0, we obtain the equality res = xy, which
justifies that the program is correct.

This example shows the importance of program logics as a way to formalize and to
justify informal notions that arise from the practice of programming. An experienced
programmer may already think about while loops informally in terms of loop invariants,
by simulating the action of a small number of iterations and then generalizing this action
to an arbitrary number of times needed to invalidate the guarding condition of the loop.
However, Hoare logic captures this intuition as a formal and reusable reasoning rule,
that is, a general principle that applies to an arbitrary while loop, regardless of the
operational complexity of the iterated instructions.

Since the work of Floyd and Hoare, the field of Program Logics has seen many advances
that extended the range of application of Hoare logic. A limitation of Hoare logic is
the inability to reason modularly about mutable state: logical assertions in Hoare logic
are not well-suited to describe unrelated portions of the memory. This deficiency leads
to overly complicated reasoning principles about programs that manipulate mutable
data structures. A satisfactory solution to this problem came in the early 2000’s with
the introduction of Separation Logic by O’Hearn, Reynolds, and Yang [ORY01, Rey02].
Among other features, Separation Logic extends the language of logical assertions of
Hoare logic with the separating conjunction, a novel logical connective that can be used
to succinctly describe disjoint parts of the heap. This connective allows the statement
of the frame rule, which captures the idea that a program modifies only parts of the
heap of which it is aware, thus achieving modular reasoning about state. This rule also
internalizes the pervasive notion of ownership: the principle that, if a program owns a
certain region of the heap, then only this program can modify this region.

The notion of ownership is especially important in the setting of concurrent program-
ming: for example, if a region of the memory is protected by a lock, then a program
receives ownership of this region when it acquires the lock, and transfers ownership to the
lock upon release. Separation Logic has indeed been extended to support reasoning about
concurrent programs [O’H07, GBC+07]. One of the most sophisticated examples of such
extensions is Iris [JKJ+18], a Separation Logic that reaches an outstanding expressive
power by adding support for two features: user-defined higher-order ghost state and
invariants. Ghost state is fictional state that appears during the verification of a program.
It is an old technique [AL88] in the field of Proof of Programs, but, in Iris, it proves
itself unprecedentedly powerful because (1) Iris introduces an abstract notion of resource,
which the user can define according to the task at hand, and (2) ghost state in Iris is
higher-order, meaning that ghost state can contain Iris assertions. Invariants are used to
reason about fine-grained concurrent programs: an invariant protects a shared region of
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the memory, and allows ownership of this region to be transferred during atomic steps of
execution.

A myriad of papers [VB21, TB19, FKB18, JJKD18] shows evidence of the success of
Iris as a powerful tool for the verification of programs and for the study of programming
languages. However, a class of programs has been largely ignored by separation logics, in
general, and by Iris, in particular: programs with delimited-control operators. Delimited-
control operators extend a language with the ability to capture a fragment of the stack and
to reify it as a continuation. They form powerful programming constructs that are present
in languages such as Scheme [sch] and Racket [Fla21a], and can be used, for example, to
implement lightweight threads [DEH+17], coroutines [dMI09], and backtracking [DF90,
BD04, KcSFS05]. However, these operators invalidate the intuition that a program is
a code block with an entry and an exit. For this reason, delimited-control operators
are often regarded as advanced programming techniques, that must be used with great
care. The aim of this thesis is to remedy this situation: we wish to design reasoning
rules for delimited-control operators, and thereby contribute to their understanding. The
particular delimited-control operators studied in this thesis are effect handlers.

1.2 Effect handlers

Effect handlers were introduced by Plotkin and Pretnar [PP09] in the setting of the
algebraic approach to the study of the semantics of programming languages. The algebraic
approach [PP04] formalizes the semantics of a programming construct by means of
equations stating which syntactically different usages of this construct have the same
operational meaning. A construct that fits into this formalism is called an algebraic effect
and its set of equations is called its algebraic theory. Formulating the algebraic theory of
an effect allows one to study this construct in the abstract setting of Category Theory.
The extension of a language L with an algebraic effect can then be seen as the free model
of the associated algebraic theory: it is the set of L programs extended with this effect,
modulo its algebraic equations. A handler of an algebraic effect emerges in this formalism
as a homomorphism from the free model of the algebraic effect to a user-defined one.

In spite of this elegant mathematical formulation of algebraic effects and handlers,
this thesis studies effect handlers from an operational point of view, which is better suited
to our goal of devising a Separation Logic for effect handlers. From this perspective,
effect handlers can be seen as a generalization of exception handlers. Akin to raising an
exception, a program can perform an effect to interrupt the normal flow of execution
and transfer control to an effect handler. Unlike an exception handler, an effect handler
gains access to a delimited continuation, which represents the fragment of the evaluation
context comprised between the point where the effect was performed and the point where
the effect handler was installed. Therefore, this fragment of the evaluation context is
not discarded as in the case of an exception handler, but reified as a first-class value.
The handler may wish to ignore this continuation, in which case its behavior is similar
to an exception handler, or it may wish to invoke this continuation, in which case the
suspended computation is resumed.

In recent work, Dolan et al. [DEH+17] show that effect handlers have interesting
applications to systems programming. In particular, they show how effect handlers can
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1 (* The type of a higher -order iteration method. *)
2 type ’a iter = (’a -> unit) -> unit
3
4 (* The type of a lazy sequence. *)
5 type ’a seq = unit -> ’a head
6 and ’a head = Nil | Cons of ’a * ’a seq
7
8 (* Implementation of [invert] in OCaml 4.12.0+ effects+domains.*)
9 let invert (type a) (iter : a iter) : a seq = fun () ->

10 let open struct effect Yield : a -> unit end in
11 let yield x = perform (Yield x) in
12 match iter yield with
13 | effect (Yield x) k -> Cons (x, fun () -> continue k ())
14 | () -> Nil

Figure 1.1: Example of control inversion using effect handlers.

be used to write an asynchronous computation library, whose clients can fork lightweight
threads and wait for a thread to produce a result. Another interesting application of
effect handlers is control inversion, which allows converting a higher-order iteration
method for a collection of elements into a lazy sequence of elements [dVP21], or in
other words, converting a “push” producer into a “pull” producer. More generally, it
has been argued that, “by separating effect signatures from their implementation, [effect
handlers] provide a high degree of modularity” [KLO13]. Moreover, effect handlers can
simulate most delimited-control operators [FKLP19]. For these reasons, effect handlers
are finding their way into research programming languages such as Eff [BP15, BP20],
Effekt [BSO20b, BSO20a], Frank [LMM17], Koka [Lei14, Lei20], Links [HLA20], and into
mainstream programming languages such as OCaml 5 [SDW+21].

1.3 Goals and challenges

To illustrate the goals and challenges of this thesis, let us study the program invert that
appears in Figure 1.1. This program is written in the OCaml programming language
version ocaml-variants.4.12.0+domains+effects, 1 an experimental version of OCaml
with support for effect handlers. It uses effect handlers to transform a higher-order
iteration method for a collection of elements into a lazy sequence of these elements. We
shall soon explain what each of these terms means. However, let us first introduce
separately the four syntactic constructs used in this example.

• Introducing an effect. In OCaml, both the program fragment that performs
effects and the one that installs an effect handler must carry an identifier called
an effect name. In this way, the program that performs an effect can specify the
handler that must be invoked. The construct to introduce a new effect name is
called an effect declaration and it is written as follows:

1At the time of writing, installation instructions for this version of the OCaml compiler can be found
at the following url: https://github.com/ocaml-multicore/multicore-opam.

https://github.com/ocaml-multicore/multicore-opam
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effect <name> : <type> -> <type>

In addition to the new effect name, the user must also include two types: the
argument type of the effect, in the left-hand side of the arrow; and the return type,
in the right-hand side of the arrow. We shall explain the role of each of these
types when studying the remaining syntactic constructs. An effect declaration
can appear either at the toplevel or inside a module. In the implementation of
invert (Figure 1.1), we must place an effect declaration inside the scope of the
function invert, because the type a, on which this effect depends, is not known at
the toplevel. Therefore, in line 10, we introduce the effect name Yield by means of
the open struct ... end construct, which defines a module that is immediately
opened.

• Performing an effect. To perform an effect, one must specify an effect name and
an expression, called the effect argument or payload :

perform (<name> <expr> )

The type of the effect argument must coincide with the argument type of the
specified effect name. OCaml assigns the return type of the effect name to this
whole expression. Operationally, when a program performs an effect, this program
is paused and the fragment of the stack up to the innermost handler able to handle
this effect is reified into a continuation that is passed to this handler.

• Installing a handler. To install a handler over an expression, it suffices to wrap
this expression over a match ... with construct with two branches: (1) an effect
branch, and (2) a return branch.

match <expr> with
| effect (<name> <var> ) <var> -> <expr>
| <var> -> <expr>

The expression monitored by the handler is called the handlee. The handler transfers
control to the effect branch if the handlee performs an effect whose name coincides
with the one specified by the effect branch. In this case, the first variable, from left
to right, binds the effect argument, and the second variable binds the continuation.
The handler transfers control to the return branch if the handlee terminates normally.
In this case the variable in this branch binds the result of the handlee’s evaluation.

• Invoking a continuation. The instruction continue can be used to invoke a
continuation:

continue <expr> <expr>

The first expression, from left to right, is the continuation, and the second one is
the expression with which the continuation is invoked. A continuation represents a
paused handlee that performed an effect under a handler. Invoking a continuation
with a certain value resumes the handlee as if the perform instruction had returned
this value. Moreover, when a continuation is invoked, the handler is reinstalled over
the handlee. This behavior corresponds to a deep-handler semantics, as opposed
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to a shallow-handler semantics, under which invoking a continuation does not
reinstall the handler. Despite of their differences, deep and shallow handlers are
inter-expressible [HL18]. Finally, we note that continuations in OCaml are one-shot :
they can be invoked at most once. In Chapter 2, we compare one-shot continuations
to multi-shot continuations, which can be invoked multiple times.

The implementation of invert (Figure 1.1) is composed of three parts: (1) the
declaration of the type of iteration methods in line 2; (2) the declaration of the type of
lazy sequences in line 5; and (3) the implementation of invert in line 9.

An iteration method receives a function of type’a -> unit , called the iteratee, which
consumes a single element of type’a and might perform some action (such as printing this
element). An iteration method applies the iteratee to each element of a data structure.
Given a list of elements xs, for example, one can define an iteration method for xs as
follows:

let rec list_iter (xs : ’a list) (f : ’a -> unit) =
match xs with [] -> () | u :: us -> (f u; list_iter us f)

Iteration methods for other data structures, such as trees and arrays, can be similarly
defined. In fact, iteration methods are the standard approach in OCaml to repeat an
action over each element of a collection, and a collection’s API usually includes this
feature.

Lazy sequences form yet another approach to repeating an action over elements of
a structure. A lazy sequence is a thunk that, when forced, returns either a Cons value,
which is a pair of one of the structure’s elements and a lazy sequence representing the
remaining elements, or an Nil value, indicating that all elements have been produced.
With a lazy sequence, a program can thus access elements of a structure on demand :
there is no need to traverse the whole structure at once, which is the case with iteration
methods. Because elements are produced one at a time, it is possible to define a lazy
sequence representing an infinite structure, such as the sequence of nonnegative integers:

let nonneg_integers_seq : int seq =
let rec from n = fun () -> Cons (n, from (n + 1)) in from 0

An iteration method that traverses this sequence would not terminate:

let nonneg_integers_iter : int iter = fun f ->
let rec from n = f n; from (n + 1) in from 0

This distinction creates a tension between iteration methods and lazy sequences: should
a collection API support one of these features, or should it support both?

With effect handlers, however, this tension disappears: one can convert an iteration
method into a lazy sequence. The idea is to use an effect to pause the iteration method
and to resume its execution on demand. This is precisely what invert does. In line 10,
the effect name Yield is introduced. In line 11, invert defines the function yield, which
performs this effect Yield. Finally, in line 12, invert installs a handler over the expression
iter yield. During the execution of this expression, every time the function yield is
applied to an element x, the evaluation of iter is suspended and control is transferred
to the effect branch of the handler. The effect branch has access to both the element x,
to which yield was applied, and to a continuation representing the suspended iteration.
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The element is used to form the left component of a Cons pair, while the continuation
is used to build the sequence of the remaining elements. When, and if, the iteration
terminates, the sequence produces the Nil marker.

We have presented an informal explanation of invert, but how to formally specify
and verify this piece of code? Ideally, the specification of invert should translate into
the formal setting of a program logic the following intuitive statement: “invert converts
an iteration method into a lazy sequence". The formalization of this statement can be
divided into two tasks: (1) to write the specification of an iteration method; and (2) to
write the specification of a lazy sequence. One can then write invert’s specification in a
pre- and postcondition style, where the precondition states that invert takes an iteration
method as an argument, and the postcondition states that invert produces a sequence.

In traditional higher-order Separation Logic, an iteration method iter for a collection
of elements xs can be specified as follows:

∀If.(∀u, us. {I(us)} fu {I(us ++u)}) −−∗ {I[]} iter f {I(xs)} (1.1)

The predicate I represents the internal state of the method. It is parameterized by the
list of elements that have already been fed to f . The specification says that for any
such predicate, if f updates the internal state of the iteration by passing from I(us) to
I(us ++u), then the complete traversal of the structure updates the initial state I[] to the
final state I(xs).

However, this specification says nothing about the effects that either f or iter might
perform. It is important to include this information, because invert assumes that iter
does not intercept the effects that the iteratee might perform. For instance, invert does
not correctly convert the following iteration method into a sequence:

let ocaml_iter = fun f ->
match f ’o’; f ’c’; f ’a’; f ’m’; f ’l’ with
| effect _ _ -> ()
| _ -> ()

This program iterates over the list of characters [’o’, ’c’, ’a’, ’m’, ’l’], but it
installs a “catch-all” handler over the applications of the iteratee so that, if f performs an
effect, then this effect is intercepted by ocaml_iter and ocaml_iter terminates immedi-
ately. In particular, a Yield effect never reaches the handler installed by invert. The
function ocaml_iter is not a valid input of invert, even though it satisfies Specifica-
tion 1.1 if one reads the triple {P} e {Q} as saying “if P holds, then e either diverges or
terminates in a state where Q holds”. This informal reading of specifications says nothing
about the effects that a program fragment e might perform during its execution. This
problem highlights the first challenge which one must overcome to specify and to verify
invert:

Challenge 1 (Specification) To extend Separation Logic with
means to describe the effects that a program might perform.

Assuming that one has found means to describe the effects that a program fragment
might perform, then comes the next challenge: to verify that programs exploiting effects
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and effect handlers, such as the function invert, meet their specifications; that is, one
must find rules to reason about delimited-control operators:

Challenge 2 (Verification) To extend Separation Logic with
rules to reason about delimited-control operators.

The main goal of this thesis is to design a logic that addresses these limitations of
Separation Logic, and enables the verification of programs with effect handlers, such
as invert. Moreover, this logic should provide means to reason modularly about a
program fragment that performs effects and the program fragment that handles these
effects. This feature is already essential in the example of invert, because we would like
the specification of iter to be independent of the Yield handler, which is part of the
implementation of invert and is unrelated to iter.

1.4 Overview

Chapter 2 shows how this thesis accomplishes its main goal: it presents Hazel, a novel
Separation Logic with support for effect handlers and one-shot continuations. Chapter 3
then shows how one may apply this logic to the verification of invert. Chapters 4 and 5
illustrate further applications of Hazel: Chapter 4 shows the verification of a library for
lightweight threads and Chapter 5 shows the verification of a library for reverse-mode
automatic differentiation. We then explore variants of Hazel. Chapter 6 presents Maze,
a logic for effect handlers with multi-shot continuations, and illustrates the application
of this logic to the verification of a simple SAT solver. Chapter 7 presents TesLogic, a
logic for effect handlers with dynamic generation of effect labels, and applies this logic to
the study of type systems. Moreover, Chapter 7 introduces Tes, a type system for effect
handlers with dynamic labels, and proves the soundness of Tes through the semantic
interpretation of typing judgments as specifications in TesLogic.

Coq formalization. At the time of writing, the Coq formalization of the results from
Chapters 2 to 6 can be found at:

https://gitlab.inria.fr/cambium/hazel

Moreover, the Coq formalization of the results from Chapter 7 can be found at:

https://gitlab.inria.fr/cambium/tes

Alternatively, a snapshot of both projects is available at the following persistent location:

https://doi.org/10.5281/zenodo.7371093

https://gitlab.inria.fr/cambium/hazel
https://gitlab.inria.fr/cambium/tes
https://doi.org/10.5281/zenodo.7371093


Chapter 2

A Separation Logic for Effect
Handlers

In this chapter, we introduce Hazel, a Separation Logic with support for effect handlers.
This logic enjoys most forms of modular reasoning permitted by Separation Logic: (1) it
admits the bind rule, thus allowing context-local reasoning ; and (2) it admits the frame
rule, thus allowing local reasoning about the state. Through the novel notion of protocols,
the Hazel logic allows one to reason separately about a program that performs effects and
a program that handles these effects. The contents of this chapter have been presented in
a published paper [dVP21].

2.1 Syntax and semantics of HH

To reason formally about effect handlers, we must first formalize their operational
semantics. To this end, we introduce HH , a calculus with support for both shallow
handlers (as a primitive construct) and deep handlers (as a derived construct), dynamically
allocated mutable state, one-shot continuations, and unnamed effects. 1

Design choices

Mutable state. We choose to support mutable state because there are important
applications of effect handlers that exploit this feature (Chapters 4 and 5 provide examples
of such applications), and because this feature is also supported by OCaml, a major and
realistic programming language to which we would like to apply the reasoning principles
that we might discover for HH .

One-shot versus multi-shot. Another design choice is the discipline guiding the
usage of continuations: should HH support multi-shot continuations or should it support
one-shot continuations, that is, should continuations be allowed to be called multiple
times or at most once? In OCaml, continuations are one-shot, so, if we follow our intent
to apply the discovered principles to OCaml, we are inclined to opt for this flavor of
continuations. However, there is a more fundamental reason why we wish to impose a
one-shot discipline: multi-shot continuations break the frame rule of Separation Logic.
This means that, in the presence of multi-shot continuations, assuming the frame rule
leads to unsound reasoning. The following OCaml program illustrates how the frame
rule, in a language with multi-shot continuations, leads to the derivation of an unsound
specification.

1Chapter 7 applies the key ideas from this chapter to a setting with named effects.
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1 let call f b =
2 b := 0; (* Set [b] to zero. *)
3 f(); (* Apply frame rule; keep ownership of [b]. *)
4 b := !b + 1; (* Increment contents of [b] by one. *)
5 assert (!b = 1) (* Now , [b] must hold the value one. *)

The function call sets b to 0, calls a function f given as an argument, and then
increments b by one. Under the assumption that call is used in the traditional subset of
OCaml without effect handlers, the following specification holds:

∀f. {True} f() {True} −−∗ {b 7→ −} call f b {b 7→ 1} (2.1)

This specification guarantees, in particular, that the assertion on line 5 succeeds. The key
step to derive this specification is the following application of the frame rule:

{True} f() {True}
{b 7→ x} f() {b 7→ x}

This instance of the frame rule lets one extend the footprint of f and argue that the
ownership of b is recoverable upon f’s return.

Specification 2.1, however, is incorrect in a setting with effect handlers and multi-
shot continuations. The essential reason why the specification would no longer hold is
that, in the presence of multi-shot continuations, a function might terminate multiple
times; therefore, the update instruction on line 4 might be executed multiple times, thus
invalidating the assertion on line 5. Here is a program that leads to such a behavior:

effect Escape : unit -> unit
let f() = perform (Escape ())
let b = ref 0
let _ =

match call f b with
| effect (Escape ()) k ->

continue (Obj.clone_continuation k) ();
continue k () (* Assertion fails! *)

| () -> ()

This program introduces the effect name Escape, defines a function f that performs
this effect, allocates a reference b, and then installs an Escape handler over the applica-
tion call f b. When f is called, during the execution of call, it performs an Escape
effect and control is transferred to the handler that receives a continuation k representing
the suspended execution of call. This handler then invokes the continuation twice; both
invocations trigger the execution of line 4, so b is incremented twice, and, during the
second time, the assertion in line 5 fails. (OCaml dynamically checks that continuations
are resumed at most once, but, here, we bypass this dynamic check by using the unsafe
feature Obj.clone_continuation, which produces a copy of the continuation. 2)

Unnamed effects. Unlike effects in OCaml, unnamed effects do not carry a name, they
carry only a payload value. Once a program performs an unnamed effect, this effect is

2This feature is available in version ocaml-variants.4.12.0+domains+effects of the OCaml compiler,
but not in version 5.
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Values, expressions, and operations

Op ∋ ⊙ ::= + | not | and | or | ==
Val ∋ h, r, v ::= () | b (∈ Bool) | i (∈ Int) | ℓ (∈ Loc) | ⊙ (∈ Op)

| rec f x. e | (v, v) | inji v | cont (ℓ,N)
Expr ∋ e ::= v | x | e e | (e, e) | proji e | inji e

| match e with (v | v) | if e then e else e | ref e | ! e | e := e
| do e | eff v N | try e with (v | v)

Evaluation contexts

Ectx ∋ K ::= • | e K | K v | (e,K) | (K, v) | proji K | inji K
| match K with (v | v) | if K then e else e
| ref K | !K | e := K | K := v | do K
| try K with (v | v)

Nctx ∋ N ::= • | e N | N v | (e,N) | (N, v) | proji N | inji N
| match N with (v | v) | if N then e else e
| ref N | !N | e := N | N := v | do N

Figure 2.1: Syntax of HH .

captured by the innermost handler. The reason for adopting this simplification is that
it lets us focus on the heart of the problem of devising reasoning principles for effect
handlers. Once we solve Challenges 1 and 2, we should be able to adapt the gained
insights to variants of HH .

Shallow effect handlers. Shallow and deep handlers are inter-expressible [HL18] (in a
calculus with recursive functions and binary sums), so this design choice is not important.
The reason we opt for shallow handlers is that the encoding of deep handlers on top of
shallow handlers is simpler than the encoding in the reverse direction.

Syntax

Figure 2.1 shows the syntax of values, expressions, and evaluation contexts. Most of
the constructs are standard. They include recursive functions, binary sums, binary and
unary operations, and references. We use infix notation when writing the application
of a binary operation to a pair of arguments. We define a non-recursive function as
an anonymous recursive function, λx. e ≜ rec_x. e, and we define a let binding as
the application of a function to the expression whose result is being bound, let x =
e1 in e2 ≜ (λx. e2) e1. Non-standard constructs include the instruction for performing
an effect, do e, active effects, eff v N , first-class continuations, cont (ℓ,N), and shallow
handlers, try e with (h | r). The argument e of the instruction do e is called the effect
payload. The values h and r of a handler expression are called the effect branch and the
return branch, respectively. Active effects play a role in the definition of the operational
semantics as we shall explain in the next segment. A continuation carries a location ℓ,
which stores a Boolean indicating whether this continuation has been called, thus allowing
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Reduction relation e / σ → e / σ

BetaStep
(rec f x. e) v / σ → e{(rec f x. e)/f}{v/x} / σ

ProjStep
proji (e1, e2) / σ → ei / σ

CaseStep
match inji v with (v1 | v2) / σ → vi v / σ

IfStep
if b then e1 else e2 / σ → if (b = true) then e1 else e2 / σ

AllocStep
ℓ /∈ dom(σ)

ref v / σ → ℓ / σ[ℓ 7→ v]

ReadStep
σ(ℓ) = v

! ℓ / σ → v / σ

WriteStep
ℓ ∈ dom(σ)

ℓ := v / σ → () / σ[ℓ 7→ v]

DoStep
do v / σ → eff v • / σ

EffStep
N1 ̸= •

N1[eff v N2] / σ → eff v (N1[N2[•]]) / σ

TryWithEffectStep
ℓ /∈ dom(σ)

try (eff v N) with (h | r) / σ → h v (cont (ℓ,N)) / σ[ℓ 7→ false]

TryWithReturnStep
try v with (h | r) / σ → r v / σ

ResumeStep
σ(ℓ) = false

(cont (ℓ,N)) v / σ → N [v] / σ[ℓ 7→ true]

ContextStep
e / σ → e′ / σ′

K[e] / σ → K[e′] / σ′

Figure 2.2: Reduction rules of HH .

the implementation of a dynamically enforced one-shot policy. Moreover, a continuation
carries an evaluation context N corresponding to the computation that performed an
effect under a handler. This evaluation context belongs to the syntactic category of
neutral evaluation contexts, a subset of usual evaluation contexts K that does not include
handlers. Because effects are unnamed, when a handler captures an evaluation context,
this context must be neutral.

Semantics

The operational semantics of HH is defined by means of a reduction relation on pairs of
an expression e and a store σ, which is a finite map from memory locations to values.
The definition of the reduction relation appears in Figure 2.2. Under rule DoStep, an
instruction do v reduces to an active effect carrying the value v and the empty context.
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This active effect will then gradually swallow its surrounding context. Indeed, under
rule EffStep, an active effect eff v N2 that evaluates under a neutral context N1

reduces to the active effect carrying the extended context N1[N2[•]]. Because this rule
applies only to neutral contexts, an active effect does not swallow a handler. Under
rule TryWithEffectStep, when an active effect eff v N reaches a handler, the handler’s
effect branch h is called with two arguments: (1) the value v and (2) the reification of N
as a first-class continuation. This continuation contains a fresh memory location ℓ that
indicates whether the continuation has been called. Initially, the location ℓ stores the
value false, but, under rule ResumeStep, when a program invokes a continuation, this
location is updated to true. Therefore, a one-shot policy is indeed enforced. Finally,
under rule TryWithReturnStep, if the handlee reduces normally to a value v, then the
return branch r is called with v as its argument.

Deep handlers Here is the encoding of deep handlers on top of shallow handlers:

deep-try e with (h | r) ≜
(rec deep tk . try tk() with (λx k. h x (λy. deep (λ_. k y)) | r)) (λ_. e)

The function deep takes a thunk tk as input and evaluates this thunk under a shallow
handler. If the handlee terminates normally, then the return branch r is called. If the
handlee performs an effect, then the effect branch h is called with a modified version of
the continuation that reinstalls deep. Therefore, deep handles further effects performed
by the continuation. The deep handler construct deep-try e with (h | r) is then simply
defined as the application of deep to the thunk λ_. e.

2.2 Logical assertions and protocols

The key idea to address Challenge 1 – which addresses the inability of traditional
Separation Logic to specify the effects that a program may perform – is to introduce the
notion of a protocol. A protocol is a contract established between handler and handlee: it
describes a functionality – for example, mutating the state of a memory cell, or forking a
thread – on which the handlee can rely, and which the handler must implement.

Instead of building the notion of protocols from scratch, we introduce protocols as a
derived notion in Iris [JKJ+18, BB18], a modern and expressive Separation Logic. We
choose to work with Iris for the following reasons:

1. Core logic: Iris includes of a core logic with Separation-Logic inspired connectives
and modalities. This core logic is language independent : it is not tied to a particular
choice of programming language. For instance, Iris includes a default notion of
weakest precondition, but this notion is built on top of the core logic. A user is thus
free to work with a language of her own choice and to build a notion of weakest
precondition according to her own needs.

2. Ghost state: Iris has support for ghost state, a verification technique that allows one
to introduce fictional state that keeps track of logical entities that change during
the execution of a program but which do not appear in the program itself. All the
case studies in this thesis make use of this technique.
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3. Mechanization: Iris is formalized in the Coq Proof Assistant [Coq20]. This formal
development not only brings confidence of the absence of flaws in the logic to the
user, but it also provides an interface with which one can interactively study Iris
and its possible extensions [KTB17]. Also, one can easily integrate Iris with other
Coq developments formalizing, for example, useful mathematical concepts for the
verification of a given program.

2.2.1 Background on Iris

In this subsection, we give a brief explanation of Iris. Our purpose is to give a bird’s-eye
view of how this logical system works by informally explaining some of its subtle notions,
namely ghost state. The reader not acquainted with Iris should not feel discouraged
if some notions remain obscure. Throughout this thesis, we recall the key notions as
they reappear. Moreover, on all case studies, we hide the use of ghost state behind
abstractions that suffice for understanding their core technical content (for example, the
use of protocols). If the reader wishes to acquire a solid grasp of Iris, then we recommend
Birkedal and Bizjak’s lecture notes [BB18] as an introductory reading and Jung et al.’s
journal paper [JKJ+18] as an advanced reading, where the model of Iris is documented.

Here is the syntax of a subset of Iris assertions:

iProp ∋ P ::= P ∗ P | P −−∗ P | 2P | ▷P | ˙|⇛P | ℓ 7→ v | a
γ | . . .

In a first approximation, an Iris assertion holds relatively to a heap. The separating
conjunction P ∗ Q holds of heaps composed of two disjoint parts, one satisfying P
and one satisfying Q. The points-to assertion ℓ 7→ v holds of heaps where the location
ℓ stores v. The persistently modality 2 is used to describe immutable regions of the
heap. In particular, if the assertion 2P holds, then P can be duplicated : P ∗ P holds.
Moreover, this modality can be used to introduce the notion of a persistent assertion P :
whenever P holds, the assertion 2P holds. The later modality ▷ is used to construct
recursive definitions. The update modality ˙|⇛ is used to describe heap updates, such as
the allocation of references, or writes to a memory location.

This approximation becomes inadequate when dealing with ghost state. In this
situation, one must adjust the interpretation of Iris assertions as holding relatively to the
set of ghost variables {γi} introduced during a verification task. At any point during the
verification of a program, the user can introduce a ghost variable γ storing an element
of a camera M . A camera is an algebraic structure that dictates how the contents
of γ can be updated (the complete algebraic characterization of a camera is defined
in [JKJ+18]). A ghost variable γ can thus be seen as a global cell holding an element c of
a camera M . This element can be split into several pieces. Indeed, a camera includes a
binary operator _ ·_ such that, if c = a · b, then c splits into a and b. The assertion a

γ

means that one of the pieces of the element stored in the global cell γ is a. Therefore,
if the assertion a · b γ holds, then one can further decompose the global state into the
individual pieces a and b; that is, the assertion a

γ ∗ b
γ holds. To update the contents

of γ, one does not need to collect all these pieces. One can update each individual piece
separately as long as their composition remains well-defined. (The meaning of well-defined
is given by the validity predicate V, which is also included in the definition of a camera.)
In Iris terminology, such updates are qualified as frame-preserving. The update modality
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is used to describe frame-preserving updates: if updating the piece of ghost state a to b
is frame-preserving, then the assertion a

γ entails ˙|⇛ b
γ . Finally, when dealing with

ghost state, the meaning of the persistently modality is adjusted by means of the (partial)
function core |_|. The intuition is that, when defined, this function assigns an element c
to its duplicable core; that is, an element |c| that can be split into two copies of itself:
|c| = |c| · |c|. The assertion 2P holds relatively to the state obtained by applying |_| to
the contents of every introduced ghost cell. If the core is not defined at the contents of a
particular ghost cell, then this ghost cell is simply ignored. As a simple example, consider
a ghost cell γ storing an element c. If |c| is well-defined, then the assertion 2 a

γ means
that a is a piece of |c|, rather than c; that is, there exists b, such that |c| = a · b.

2.2.2 Protocols

A protocol Ψ is an inhabitant of the type

Protocol ≜ Val → (Val → iProp)→ iProp.

Therefore, a protocol is a relation between a value u and a predicate Φ. The value u
represents the payload used by a program when performing an effect, whereas the predi-
cate Φ represents a specification of the continuation of this program: the assertion Φ(w)
must hold when resuming the program with a value w.

This relation between an effect payload and a specification of a continuation can be
used to describe the functionality on which a program fragment relies when performing an
effect. For example, one can define the predicate-pair protocol (Φpre; Φpost) that attaches
a precondition Φpre and a postcondition Φpost to performing an effect.

Definition 2.1 (Predicate-pair protocol) Let Φpre and Φpost be predicates. The predi-
cate-pair protocol is defined as follows:

(Φpre; Φpost) ≜ λuΦ. Φpre(u) ∗ (∀w. Φpost(w) −−∗ Φ(w))

This protocol expresses the following contract: to perform an effect with value u, the
assertion Φpre(u) must hold; moreover, for some value w, when resuming the continuation
with w, the assertion Φpost(w) can be assumed to hold. Therefore, from the eyes of the
handlee, performing this effect seems as calling a function specified by precondition Φpre
and postcondition Φpost: if the input u satisfies Φpre, then the output satisfies Φpost.

Send-receive protocol

As the upcoming examples and case studies demonstrate, the pattern of constructing a
protocol that attaches a precondition and a postcondition to an effect is very common.
Predicate-pair protocols, however, are not well-suited to describe contracts with some
form of dependency between the precondition and the postcondition. This deficiency
is illustrated by the simple example where the effect one wishes to describe is “to push
elements into a stack ”. To perform this effect, one must supply a pair of a reference q
to the stack and an element u to be inserted into the stack. The precondition should
state that the stack currently contains the elements of a list us, and that one has the
permission isStack q us to modify this stack:

Φstack
pre (q, u) = ∃ us. isStack q us
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The postcondition should state that the value returned is (), and that the stack has been
updated with the new element u:

Φstack
post (()) = ∃u us. isStack q (u :: us)

However, because u is hidden behind an existential quantifier, this postcondition says
only that the stack is nonempty. For instance, it does not say that the element on top of
the stack corresponds to the last inserted element. It is possible to express this constraint
by means of a variable x that stands for u and occurs free in both the precondition and
the postcondition. The precondition would state that x corresponds to the element to be
inserted in the stack, and the postcondition would state that the stack is extended with x.
This variable would have to be bound in such a way that every time a program performs a
push operation, it can choose a different instance of x. The send-receive protocol includes
this flexibility.

Definition 2.2 (Send-receive protocol) Let x⃗ and y⃗ be lists of binders, let v and w
be values, and let P and Q be assertions. The send-receive protocol is defined as follows:

! x⃗ (v) {P}. ? y⃗ (w) {Q} ≜ λuΦ. ∃ x⃗. u = v ∗ P ∗ (∀ y⃗. Q −−∗ Φ(w))

This protocol expresses the following contract: to perform an effect with value u,
one must find instances of the variables x⃗ such that u = v and the assertion P holds;
moreover, for every instance of the variables y⃗, the assertion Q can be assumed to hold
when resuming the continuation with w, the return value.

The scope of a binder in x⃗ or in y⃗ includes every term that appears at the right of this
binder in the writing of the send-receive protocol. In particular, a binder in x⃗ can occur
free in v, P , w or in Q. Therefore, to describe a push operation of a stack, it suffices to
introduce a binder u occurring free in both v and Q:

!u us q (q, u) {isStack q us}. ? (()) {isStack q (u :: us)}

Send-receive protocols subsume predicate-pair protocols. Indeed, it suffices to introduce
a binder x that stands for the effect argument and to introduce a binder y that stands for
the return value:

(Φpre; Φpost) can be written as !x (x) {Φpre(x)}. ? y (y) {Φpost(y)}

Bottom protocol

The bottom protocol declares the absence of effects.

Definition 2.3 The bottom protocol is defined as follows:

⊥ ≜ !x (x) {False}. ? y (y) {True}

This protocol states that, to perform an effect, the assertion False must hold. Therefore,
a program that abides by this protocol does not perform effects: it does not rely on a
service provided by a handler, and can thus be evaluated in a context deprived of handlers
(and, in particular, in the empty context).
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Protocol sum

A program usually relies on more than one effect. These effects could be the operations to
read and write a memory cell, or operations to fork a thread and wait for the execution
of this thread. In such cases, ideally, one would like first to specify each operation by
an individual protocol and then to combine these protocols to specify the entire set of
operations. The protocol sum _+_ is a combinator on protocols allowing one to proceed
in this way.

Definition 2.4 (Protocol sum) Let Ψ1 and Ψ2 be protocols. The protocol Ψ1 +Ψ2 is
defined as follows:

Ψ1 +Ψ2 ≜ λuΦ. Ψ1 uΦ ∨ Ψ2 uΦ

Given two protocols Ψ1 and Ψ2, the protocol Ψ1+Ψ2 expresses the following contract:
when performing an effect, a program can abide either by the protocol Ψ1 or by the
protocol Ψ2.

Protocol equivalence

What are the algebraic properties of the protocol sum? Is it an associative combinator?
Does it admit a neutral element? To answer these questions, we endow protocols with
the following notion of equivalence.

Definition 2.5 (Protocol equivalence) Let Ψ1 and Ψ2 be protocols. The relation Ψ1 ≡
Ψ2 is defined as follows:

Ψ1 ≡ Ψ2 ≜ ⊢ ∀uΦ. (Ψ1 uΦ −−∗ Ψ2 uΦ) ∗ (Ψ2 uΦ −−∗ Ψ1 uΦ)

The turnstile symbol ⊢ denotes a sequent of the Iris logic: let P be an Iris assertion,
the sequent ⊢ P is a meta-level assertion stating that P is derivable from Iris proof
rules [BB18]. In accordance to the mechanization of Iris in the Coq Proof Assistant, our
meta-level logic is the Calculus of Inductive Constructions (CIC), an intuitionistic logic
for which Coq offers an interface. Therefore, meta-level assertions inhabit the type Prop
of CIC propositions.

Protocol equivalence is an equivalence relation on protocols: it is symmetric, transitive,
and reflexive. Moreover, under this notion of equivalence, the triple (Protocol ,+,⊥) forms
a commutative monoid :

Ψ1 +Ψ2 ≡ Ψ2 +Ψ1 (+ is commutative)
Ψ1 + (Ψ2 +Ψ3) ≡ (Ψ1 +Ψ2) + Ψ3 (+ is associative)

⊥+Ψ ≡ Ψ (⊥ is a left neutral element of +)
Ψ+⊥ ≡ Ψ (⊥ is a right neutral element of +)

Upward closure

A key notion when working with protocols is that of a monotonic protocol.

Definition 2.6 (Monotonic) A protocol Ψ is monotonic if the following sequent is
derivable:

⊢ ∀u,Φ,Φ′. (∀w. Φ(w) −−∗ Φ′(w)) −−∗ ΨuΦ −−∗ ΨuΦ′
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Intuitively, a monotonic protocol Ψ expresses the idea that, if, according to the
protocol Ψ, the handler-provided answer to performing an effect with payload z satisfies
the predicate Φ, then this answer satisfies a weaker predicate Φ′.

Most of the examples of protocol that we have seen so far are monotonic: send-receive
protocols are monotonic, and, consequently, so is the bottom protocol. However, an
arbitrary protocol is not necessarily monotonic. In such cases, one can take its upward
closure.

Definition 2.7 (Upward closure) The upward closure of a protocol Ψ is defined as
follows:

↑ Ψ ≜ λuΦ′. ∃Φ. ΨuΦ ∗ (∀w. Φ(w) −−∗ Φ′(w))

The upward closure is monotonic by construction. Graphically, it is the dashed arrow in
the following diagram:

Φ′

u Φ

↑Ψ

Ψ

≤

The protocol-annotated arrows represent a protocol relation between the value u and a
predicate. The ≤-annotated arrow means that Φ is stronger than Φ′: for every w, Φ(w)
implies Φ′(w).

Here is a summary of the properties of the upward closure:

Lemma 2.1 (Properties of the upward closure) The upward closure is monotonic:

For every Ψ, the protocol ↑ Ψ is monotonic.

Moreover, the upward closure satisfies the following properties:

1. The upward closure has no action over monotonic protocols:

↑ Ψ ≡ Ψ (for every monotonic protocol Ψ)

In particular, the following equations hold:

↑ ( ! x⃗ (v) {P}. ? y⃗ (w) {Q}) ≡ ! x⃗ (v) {P}. ? y⃗ (w) {Q}
↑ ⊥ ≡ ⊥

2. The upward closure distributes over the protocol sum:

↑ (Ψ1 +Ψ2) ≡ ↑ Ψ1+ ↑ Ψ2 (for every Ψ1 and Ψ2)

Protocol ordering

Finally, to conclude the presentation of protocols, we introduce the notion of protocol
ordering. This notion is important in the statement of the monotonicity property of the
program logic.
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Weakest precondition ewp e ⟨Ψ⟩{Φ}

(EWP1) ewp v ⟨Ψ⟩{Φ} ≜ ˙|⇛Φ(v)

(EWP2) ewp (eff v N) ⟨Ψ⟩{Φ} ≜ (↑ Ψ) v (λw. ▷ ewp N [w] ⟨Ψ⟩{Φ})

(EWP3) ewp e ⟨Ψ⟩{Φ} ≜ ∀σ. S(σ)≡−∗

∃e′, σ′. e / σ −→ e′ / σ′ ∗
∀e′, σ′. e / σ −→ e′ / σ′≡−∗ ▷ ˙|⇛

S(σ′) ∗ ewp e′ ⟨Ψ⟩{Φ}

Figure 2.3: Definition of ewp.

Definition 2.8 (Protocol ordering) The protocol Ψ1 is stronger than Ψ2 if the follow-
ing assertion holds:

Ψ1 ⊑ Ψ2 ≜ 2∀uΦ. Ψ1 uΦ −−∗ Ψ2 uΦ

The assertion Ψ1 ⊑ Ψ2 means that, for every value u and predicate Φ, if the protocol Ψ1

allows performing an effect with u in a context specified by Φ, then so does the protocol Ψ2.
The use of the persistently modality ensures that this weakening argument can be applied
as many times as a program performs effects.

2.3 Program logic

In this section, we introduce a rich language with which one can describe the behavior
of programs with effect handlers. This language is the result of the combination of the
Iris base logic, the notion of protocols, and the reduction relation of HH programs. The
knot that ties all of these concepts together is the notion of weakest precondition. In
Subsection 2.3.1, we present the definition of this notion, and in Subsection 2.3.2, we
study its properties.

2.3.1 Weakest precondition

In traditional Separation Logic, the notion of weakest precondition is an assertion that
relates a program e to a postcondition Φ. The informal meaning of this assertion is the
claim that e can be safely executed (it does not get stuck) and that, if this program
produces an output v, then the assertion Φ(v) holds. With HH programs, we have to
construct the notion of weakest precondition in a slightly different way: indeed, since HH
programs can perform effects, a postcondition is no longer sufficient to describe all the
states in which a program fragment can exit; we must also specify the state when a
program performs an effect. To this end, we introduce a novel Separation Logic called
Hazel, where the notion of weakest precondition is parameterized with a protocol Ψ.
The weakest precondition is thus an assertion with the following shape: ewp e ⟨Ψ⟩{Φ},
where ewp stands for extended weakest precondition. Its informal reading is a threefold
claim about the execution of e. First, e can be safely executed. Second, e abides by the
protocol Ψ when performing effects. Third, if e produces an output v, then Φ(v) holds.
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The formal definition of ewp appears in Figure 2.3. 3 It is presented as a set of three
defining laws. The law (EWP1) covers the case where the expression e is a value. The
law (EWP2) is applicable when e is an effect, that is, an expression of the form eff v N .
The law (EWP3) covers the remaining cases.

The later modalities ▷ that appear in (EWP2) and (EWP3) guard the occurrences of
ewp on the right-hand side and thereby ensure that this recursive definition is accepted
(that is, these equations do have a solution).

The law (EWP1) formalizes the claim that, if a program reduces to a value v, then v
must satisfy the postcondition Φ.

The law (EWP2) defines the meaning of the assertion ewp e ⟨Ψ⟩{Φ} when e is an
active effect eff v N . This law expresses two requirements. First, it must be the case
that, according to the protocol Ψ, the request v is permitted. Second, it must be the
case that, for every reply w that the protocol Ψ permits, plugging the value w into the
evaluation context N yields a term N [w] that behaves in accordance with the protocol Ψ
and the postcondition Φ. According to this law, after performing one effect that conforms
to the protocol step Ψ, the program must still conform to the protocol Ψ.

The law (EWP3) describes the case where e is neither a value nor an effect. Then,
we expect e to be able to make one step of computation. (Indeed, e would otherwise be
stuck. That would represent a runtime error, which we want to forbid.) Regardless of
which step of computation is performed, we expect it to result in an expression e′ that
satisfies the specification ewp e′ ⟨Ψ⟩{Φ}.

State interpretation. The predicate S that appears in law (EWP3) is the state-
interpretation predicate. It encodes an invariant about the store; for this reason, the
right-hand side of the law involves an assumption S(σ) and a goal S(σ′). More precisely,
this predicate states ownership over a piece of a fixed ghost cell γheap . The contents
of this cell inhabit an authoritative camera [JKJ+18]. An authoritative camera is a
construction Auth(M) that builds a camera structure from a given camera M . The
elements of this construction are of two kinds: (1) there are authoritative elements, written
• c, where c ∈M ; and (2) there are fragments, written ◦ a, where a ∈M . An authoritative
element • c is a distinguished element, which, by the composition rules of the authoritative
camera, cannot be split into smaller pieces. Therefore, the ghost cell γheap contains one
(and exactly one) such piece. Fragments, on the other hand, follow the composition rules
of the camera M :

◦ (a1 ·M a2) = ◦ a1 ·Auth(M) ◦ a2
The validity-predicate V of Auth(M) is defined in such a way that every fragment ◦ a

is smaller than the unique authoritative element • c; that is, there exists b such that
c = a ·M b. The idea is thus to set the physical heap σ as the authoritative-element piece
of γheap and to define the points-to predicate ℓ 7→ v as asserting that one of the fragment
pieces of γheap is ◦ {ℓ 7→ v}. Indeed, we let the contents of γheap range over the following
camera:

Auth(Loc fin−⇀ Ex(Val)) (2.2)
3This definition is similar to the one presented in the paper [dVP21]. The only difference is that, in

the paper, the weakest precondition is parameterized by a mask, which is part of Iris’s mechanism to
support invariants. None of the case studies exploit this verification technique, so we choose to simplify
the presentation.
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And we define the predicate S and the points-to predicate as follows:

S(σ) ≜ •σ γheap ℓ 7→ v ≜ ◦ {ℓ 7→ v} γheap

The construction Ex(A), called the exclusive camera [JKJ+18], builds a camera from
a given set A. The set of elements of this camera includes a special element  and includes
the injection of elements of A through the map ex(−) : A→ Ex(A). In the definitions
of S and of the points-to predicate, to pass from a physical heap to an element of the
camera Loc

fin−⇀ Ex(Val), we implicitly apply the following coercion:

{ℓ 7→ v} 7−→ {ℓ 7→ ex(v)}

Elements of an exclusive camera do not split, therefore we obtain the property that
a points-to predicate ℓ 7→ v is non-duplicable, thus expressing full ownership over the
location ℓ. Moreover, the choice of Camera 2.2, from which the contents of γheap are
taken, induces the following logical rules (where the operation _ ⊔ _ denotes disjoint
map union):

(ExtendHeap) •σ γheap −−∗ ˙|⇛

{
• (σ ⊔ {ℓ 7→ v}) γheap ∗
◦ {ℓ 7→ v} γheap

(UpdateHeap)
• (σ ⊔ {ℓ 7→ v}) γheap −−∗
◦ {ℓ 7→ v} γheap −−∗

˙|⇛

{
• (σ ⊔ {ℓ 7→ w}) γheap ∗
◦ {ℓ 7→ w} γheap

(LookupHeap) •σ γheap −−∗ ◦ {ℓ 7→ v} γheap −−∗ {ℓ 7→ v} ∈ σ

We exploit rules (ExtendHeap), (UpdateHeap), and (LookupHeap) from the position
of the designers of the logic to prove the reasoning rules dealing with state (rules Alloc,
Write, and Read from Subsection 2.3.2). A user of the logic does not need to be aware of
these rules or the ghost cell γheap whatsoever. In Hazel, the statement of correctness of a
complete program e is universally quantified by γheap , therefore, this ghost cell can indeed
be seen as an abstract name. As we shall see, to extract a meta-level property about e
from such a statement, one must apply the soundness theorem of Hazel (Section 2.3.3).
The application of this theorem corresponds to the allocation of a concrete ghost cell
γheap and the specialization of the result from the verification task to this cell.

2.3.2 Reasoning rules

We now establish a set of reasoning rules, which can be used to prove ewp assertions,
and thereby prove properties of programs or program fragments. The main reasoning
rules appear in Figure 2.4. Each inference rule should be understood as a (universally
quantified) magic wand.

Rule Value expresses the idea that, at any time, a program can return a value v that
satisfies the postcondition.

Rule Do reflects the idea that a program can perform an effect provided that it abides
by the currently installed protocol. Indeed, the rule dictates that, to perform an effect with
argument v under a context specified by Φ, the assertion (↑ Ψ) vΦ must hold. This rule
reveals the twofold interpretation of a postcondition as both a description of the final state
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Value
Φ(v)

ewp v ⟨Ψ⟩{Φ}

Do
(↑ Ψ) vΦ

ewp (do v) ⟨Ψ⟩{Φ}

Monotonicity
ewp e ⟨Ψ1⟩{Φ1}

Ψ1 ⊑ Ψ2 ∀w.Φ1(w) −−∗ Φ2(w)

ewp e ⟨Ψ2⟩{Φ2}

Bind
ewp e ⟨Ψ⟩{w. ewp N [w] ⟨Ψ⟩{Φ}}

ewp N [e] ⟨Ψ⟩{Φ}

BindPure
ewp e ⟨⊥⟩{w. ewp K[w] ⟨Ψ⟩{Φ}}

ewp K[e] ⟨Ψ⟩{Φ}

TryWithShallow
ewp e ⟨Ψ⟩{Φ}

shallow-handler ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′}
ewp (try e with (h | r)) ⟨Ψ′⟩{Φ′}

TryWithDeep
ewp e ⟨Ψ⟩{Φ}

deep-handler ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′}
ewp (deep-try e with (h | r)) ⟨Ψ′⟩{Φ′}

Read
ℓ 7→ v

ewp (! ℓ) ⟨Ψ⟩{y. y = v ∗ ℓ 7→ v}

Write
ℓ 7→ −

ewp (ℓ := w) ⟨Ψ⟩{_. ℓ 7→ w}

Alloc
ewp (ref v) ⟨Ψ⟩{ℓ. ℓ 7→ v}

Figure 2.4: Reasoning rules.

of a program and a specification of its surrounding environment. Rule Value endorses
the first reading, while rule Bind, which we shall discuss in the following paragraphs,
endorses the second reading.

Rule Monotonicity expresses the idea that, if a program has been verified with a
protocol Ψ1 and a postcondition Φ1, then it can be used in a context requiring less strict
constraints Ψ2 and Φ2. This rule justifies Hazel’s version of the frame rule:

Frame
R ∗ ewp e ⟨Ψ⟩{Φ}

ewp e ⟨Ψ⟩{w.R ∗ Φ(w)}

Indeed, rule Frame is derivable by the straightforward application of rule Monotonicity.
Rule Frame states that, if a program e can be executed in a context deprived of the
resources governed by R, then it is sound to assume that running e in a context extended
with such resources will not compromise them.

Rule Bind allows reasoning about sequential composition. To verify a program e
that evaluates under a neutral context N , one can first verify e in isolation and then
verify the program, which consists of placing the output of e in N . Because there is
no handler frame in N , the effects that e may perform follow the same interpretation
as those performed by N [w] (where w is the result of e). Therefore, both programs
abide by the same protocol Ψ. In a context with handlers, one may reason according to
the rule BindPure, which allows one to decouple the reasoning of a program e from an
arbitrary evaluation context K, provided that e does not perform effects.
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shallow-handler ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′} ≜
(Return branch) (∀ v. Φ(v) −−∗ ewp (r v) ⟨Ψ′⟩{Φ′}) ∧
(Effect branch) (∀ v, k. (↑ Ψ) v (λw. ewp (k w) ⟨Ψ⟩{Φ}) −−∗ ewp (h v k) ⟨Ψ′⟩{Φ′})

deep-handler ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′} ≜
(Return branch) (∀v. Φ(v) −−∗ ewp (r v) ⟨Ψ′⟩{Φ′}) ∧

(Effect branch)

∀ v, k.


(↑ Ψ) v (λw. ∀Ψ′′, Φ′′.
▷ deep-handler ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′′⟩{Φ′′} −−∗
ewp (k w) ⟨Ψ′′⟩{Φ′′})

−−∗
ewp (h v k) ⟨Ψ′⟩{Φ′}


Figure 2.5: Definitions of the predicates shallow-handler and deep-handler.

Rule TryWithShallow allows one to reason separately about handlee and handler.
This rule justifies the claim that a protocol works as a contract between handlee and
handler. All the handlee needs to know is that there is an enclosing handler that
implements effects according to a protocol Ψ. The handler, on the other hand, can
perform effects according to another protocol Ψ′, which dictates its contract with a further
enclosing handler.

The predicate shallow-handler is the shallow-handler judgment. It comprises the
specification of the handler branches h and r. Its definition appears in Figure 2.5. The
specification of the return branch states that r should be prepared to handle any output
of the handlee. The specification of the effect branch states that h should be prepared to
handle any effect that the handlee may perform. The effect branch can assume that these
effects are performed according to the protocol Ψ. This is expressed by the assertion

(↑ Ψ) v (λw. ewp (k w) ⟨Ψ⟩{Φ}),

which specifies both the effect argument v and the continuation k. The handler can
thus resume k with a reply that conforms to this protocol. In accordance to HH ’s
one-shot policy, the logic allows the handler to invoke the continuation at most once. This
restriction is instrumented in the definition of the upward closure. Indeed, unfolding the
definition of the upward closure in the above assertion yields the following one:

∃Φ′. Ψ vΦ′ ∗ (∀w. Φ′(w) −−∗ ewp (k w) ⟨Ψ⟩{Φ})

One can see that the specification of the continuation, the assertion

∀w. Φ′(w) −−∗ ewp (k w) ⟨Ψ⟩{Φ},

is affine: it can be applied at most once. Iris assertions are affine by default. To circumvent
this behavior, one may guard assertions by a persistently modality, but this is not the
case here.

Rule TryWithDeep allows one to reason separately about a deep handler and its
handlee. This rule is similar to rule TryWithShallow. It differs only in the definition of
the predicate deep-handler.
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The deep-handler judgment comprises the specification of the handler branches h
and r. The first conjunct is the specification of the return branch. It states that the
correctness of the return branch can be established under the assumption that the value
v is the output of the handlee, thereby satisfying the handlee’s postcondition Φ. The
second conjunct is the specification of the effect branch. It states that the correctness of
the handler branch can be established under the assumption that (1) v is the payload of
an effect performed by the handlee and (2) k is a continuation representing the context
under which the handlee performed this effect. This assumption is expressed by the
upward closure that appears as the premise of the ewp assertion concerning the effect
branch h. This premise is similar to the corresponding statement of the upward closure in
the definition of the shallow-handler judgment. There are however two key differences: (1)
the recursive occurrence of the deep-handler judgment and (2) the universally quantified
terms Ψ′′ and Φ′′. Intuitively, this recursive occurrence of the judgment reflects the idea
that, because a new instance of the handler is reinstalled, to invoke the continuation, this
instance must be proven correct by establishing a new handler judgment. Because HH
has support for mutable state, the behavior of this new instance of the handler may differ
from the one that was originally installed (and which captured the continuation k). The
new instance might not abide by the same protocol as the original handler does. For this
reason, the specification includes some flexibility in the choice of the protocol Ψ′′ and
postcondition Φ′′ of the new handler instance.

According to our experience, the flexibility on the choice of the protocol Ψ′′ is not
extremely useful. We have applied it to only one case study (which is not documented
in this thesis): the verification, in a variant of Hazel, of the implementation of ML-like
references using effect handlers. The flexibility on the choice of the postcondition Φ′′, on
the other hand, is crucial. For instance, we exploit this flexibility in the case studies from
Chapters 3 and 5.

Rules Alloc, Write, and Read are the standard rules of Separation Logic for reasoning
about dynamically allocated mutable state [ORY01, Rey02, Cha21]. These rules state
that the operations for allocating, writing, and reading references abide by a universally
quantified protocol Ψ, thereby expressing the fact that these operations do not perform
effects.

2.3.3 Soundness

The adequacy theorem justifies that reasoning in terms of ewp and Hazel’s reasoning rules
is sound:

Theorem 2.1 (Adequacy) Let e be a closed expression. If ewp e ⟨⊥⟩{Φ} holds, then e
is safe.

If one verifies e by proving a weakest precondition statement with the bottom protocol
and an arbitrary postcondition Φ, then e is safe: the execution of e must either diverge or
terminate with a value; it cannot crash or terminate with an unhandled effect. Because
our operational semantics includes a one-shot check, the absence of crashes implies that
no continuation is invoked twice.

Proof The proof of Theorem 2.1 is essentially the same as the proof of the adequacy
theorem documented in [JKJ+18] (Theorem 6 of Section 6.4).
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The first step is to show that the reduction of e preserves the weakest precondition;
that is, for every nonnegative integer k, for every pair of stores σ and σ′, and for every
expression e′, if e / σ reduces to e′ / σ′ in k steps, e / σ →k e′ / σ′, then the assertion
•σ γheap ∗ ewp e ⟨⊥⟩{Φ} implies that the assertion •σ′ γheap ∗ ewp e′ ⟨⊥⟩{Φ} holds

after a series of k alternating logical updates and later steps:

∀ k, e, σ, e′, σ′. (e / σ →k e′ / σ′) −−∗
( •σ γheap ∗ ewp e ⟨⊥⟩{Φ}) −−∗ ( ˙|⇛▷)k ( •σ′ γheap ∗ ewp e′ ⟨⊥⟩{Φ})

The proof of this assertion follows by induction on k, and needs to unfold ewp’s definition.
The second step is to show that, for every expression e′, the weakest precondi-

tion ewp e′ ⟨⊥⟩{Φ} implies that e′ is either a value or a reducible expression:

∀ e′, σ′. •σ′ γheap ∗ ewp e′ ⟨⊥⟩{Φ} −−∗ (e′ ∈ Val ) ∨ (e′ / σ′ → _ / _)

This result follows from the unfolding of ewp. The bottom protocol ⊥ excludes the case
where e is an active effect.

The combination of these steps leads to the following assertion:

∀ k, e, σ, e′, σ′. (e / σ →k e′ / σ′) −−∗
( •σ γheap ∗ ewp e ⟨⊥⟩{Φ}) −−∗ ( ˙|⇛▷)k ((e′ ∈ Val ) ∨ (e′ / σ′ → _ / _))

(2.3)

The plan now is to apply Iris’s soundness theorem (Theorem 5 in [JKJ+18]): for every
proposition P : Prop in the meta logic, if ( ˙|⇛▷)k P holds in Iris, then P holds in the
meta logic. One must apply this theorem to the conclusion of Assertion 2.3 to derive the
following (meta-level) theorem, which is the formal statement that e is safe:

∀ e, σ, e′, σ′. (e / σ →∗ e′ / σ′) =⇒ (e′ ∈ Val ) ∨ (e′ / σ′ → _ / _)

However, Iris’s soundness theorem applies only to assertions that hold in the empty
context. So, to conclude the proof, one must fulfill the premise •σ γheap ∗ ewp e ⟨⊥⟩{Φ}.
The assertion ewp e ⟨⊥⟩{Φ} is the theorem’s hypothesis, so it holds trivially. The
assertion •σ γheap can be shown to hold after the allocation of the ghost cell γheap
initialized with σ (Rule Ghost-Alloc from Figure 4 of Section 2.1 in [JKJ+18]). This
concludes the proof. ■

2.4 Related work

To the extent of our knowledge, Hazel is the first Separation Logic with support for effect
handlers. More broadly speaking, the work of this chapter belongs to the intersection
of two research topics: (1) reasoning about effect handlers, and (2) program logics for
control operators. We discuss each of these topics separately.

Reasoning about effect handlers

Denotational semantics. Plotkin and Pretnar [PP09] introduce a denotational se-
mantics for a language with effect handlers. This semantics allows one to think of a
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computation as a tree whose nodes are effectful operations, and to think of an effect
handler as a deconstructor of such computations: an effect handler traverses the tree
and substitutes each effectful operation with an implementation. More precisely, effectful
operations are described by an equational theory whose free model corresponds to the
semantic domain of computations. An effect handler corresponds to the application of a
homomorphism from the free model to a user-defined model. This denotational semantics
is defined only when handlers are correct: the handler must satisfy the equations of
the algebraic theory associated to an effect. The authors also show how to adapt their
previous equational logic [PP08] to account for effect handlers. This logic allows one
to state and prove that two programs are equivalent. Once such a logical judgement is
proven, the soundness statement of the logic implies equality between the denotational
interpretations of each program.

Xia et al. [XZH+20] build a Coq library, ITrees, which defines a coinductive data
structure, interaction trees. An interaction tree is a possibly infinite tree-like structure
whose nodes are either effectful operations or silent reduction steps. Handlers act on
interaction trees by providing an interpretation of the operations into an user-defined
monad. In the Related Work Section, Paragraph 8.2, the authors observe that the current
library does not support handlers in their most general form. In particular, the handler
does not have access to the continuation.

Letan et al. [LRCH18, LRCH21] develop FreeSpec, a Coq library similar to ITrees.
The main difference with respect to ITrees is is that the tree-like structure exposed by
the FreeSpec library is an inductive definition. Therefore, the range of applications of
FreeSpec is limited to terminating programs. One advantage of this restriction is that
one can compute the result of operations on such inductive constructions directly in Coq,
thus avoiding Coq’s mechanism of code extraction.

Brady [Bra13b] presents Effects, a programming language embedded in Idris [Bra13a],
where the type of a program includes a list of the effects that this program might
perform. An interesting feature is that this list of effects can be locally extended: the
programmer can introduce new effects locally and they will not interfere with the type of
the complete program. Effect handlers are declared at the top level through Idris’s type
class mechanism.

Contextual equivalence. In much of the previously discussed work, the focus is on
reasoning about the mathematical model of programs with handlers: Plotkin and Pretnar’s
equational logic allows one to establish that two programs have the same denotation;
Interaction trees is a purely mathematical structure that can be the target of a denotational
semantics. Another approach is to reason directly about programs with handlers through
contextual equivalence: one wishes to establish when two implementations of a program
can be exchanged without affecting the complete program.

Biernacki et al. [BLP20] show that contextual equivalence in the setting of a restricted
and untyped programming language with handlers is equivalent to bisimilarity: two
programs are equivalent if and only if their execution traces are related by a bisimulation.
To simplify the proof of bisimilarity results, the authors propose up-to techniques, which
they illustrate through a number of simple examples. However, it remains to see if this
verification methodology scales to the setting of a major programming language.
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In the context of a typed language, one can reason about contextual equivalence by
means of logical relations. Biernacki et al. [BPPS18] present the first logical relations
model of a type system with support for effect handlers. The type system tracks effects
through rows of effects and also has support for effect polymorphism. The logical relations
model allows proving equivalences between two programs that might exploit handlers.
The paper provides an interesting example: to supply a constant function to a higher-order
function f is equivalent to supply f with an effect which we interpret as a lookup operation
to a constant variable. Later, Biernacki et al. [BPPS20] propose a logical relations model
of a type system with support for lexically scoped handlers, a restricted kind of effect
handler where generating a fresh effect name and installing an effect handler are combined
into a single operation. This restriction eases reasoning about the dynamic behavior of
handlers because with lexically scoped handlers one has the static guarantee of which
handler is invoked when an effect is performed.

Program logics for control operators

Floyd-Hoare logics. Berger [Ber09] introduces a program logic for PCF+, an extension
of PCF [Plo77] with callcc and throw. The logic is endowed of a rich assertion language
allowing one to specify how control is transferred during the execution of a program.
Indeed, Berger’s logic suggests the interpretation of a program with higher-order control
operators as the asynchronous execution of multiple processes. From this perspective,
performing the operation throwx v̄, for example, can be seen as pausing the current
process and transferring control to the process named x, which is resumed with the vector
of values v̄. The logical assertion x̄ ⟨v̄⟩A specifies such control jumps: it states that a
program so specified jumps to x with values v̄, at which moment the assertion A holds.
Berger shows that the logic enjoys descriptive completeness [HBY06], which intuitively
means that assertions can precisely describe the behavior of programs.

Crolard and Polonowski [CP12] introduce a program logic for reasoning about ter-
minating programs with support for non-local jumps, for callcc, and for mutable stack
variables, but no support for dynamically allocated references. Their program logic is
embedded in a dependent type theory: specifications are written as types, and reasoning
rules are stated as typing rules. Even though both the language and the dependent type
theory in question are quite restrictive (types can depend only on first-class values such
as integers), Crolard and Polonowski [CP11] successfully apply their approach to prove
the correctness of Filinski’s [Fil94] encoding of shift/reset in terms of callcc and a
meta-continuation. Their results are formalized in Ott [SZO+10] and Twelf [PS99].

Separation logics. Delbianco and Nanevski [DN13] conceive HTTcc, a program logic
embedded in Coq with support for callcc and abort. HTTcc is built as an extension
of HTT , a system that offers an interface to construct programs of an expressive dependent
type ST A (p, q). This type not only describes the type A of the program’s output but
also includes a Hoare-style specification with a precondition p and a postcondition q.
Nanevski et al. [NAMB07, NVB10] show that it is possible to extend HTT with the usual
reasoning rules from Separation Logic by restricting programs to the type STsep, a subset
of ST where the frame rule is baked in program specifications. HTTcc, however, does
not support the frame rule, because programs in this variant of HTT do not necessarily
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inhabit the type STsep. If a program happens to preserve the part of the heap that it
does not know about, then this must be explicitly stated in its specification, by universally
quantifying over a residual heap [DN13, Section 3].

Timany and Birkedal [TB19] develop an Iris-based Separation Logic for a calculus
equipped with dynamically allocated mutable state, concurrency, and call/cc and throw.
Whereas we present a unary program logic, which can prove the safety of one program,
they develop a binary framework, which can be used to establish a contextual refinement
assertion between two programs. Timany and Birkedal point out that “non-local control
flow breaks the bind rule”. They define a predicate wp that does not have a bind
rule, but allows a certain style of low-level reasoning: the reasoning rules that describe
call/cc and throw paraphrase the operational semantics. On top of this, they define a
“context-local weakest-precondition” predicate clwp, which does enjoy a bind rule, but
is restricted to expressions that have no observable control effects. In contrast, in our
system, both Bind and BindPure hold: the logic reflects the fact that the expressions K[e]
and let x = e in K[x] are equivalent provided that none of the effects performed by e
are handled by K. We discuss both Timany and Birkedal’s work and Delbianco and
Nanevski’s work further in Chapter 6, where we study the encoding of callcc and throw
in a variant of HH with multi-shot continuations.



Chapter 3

Control Inversion

With the introduction of protocols and the subsequent notion of weakest precondition, we
have solved Challenge 1. Indeed, a specification in Hazel is parameterized by a protocol
that specifies the effects that a program may perform, thus repairing a limitation of the
traditional specification language of Separation Logic. Moreover, with the introduction of
Hazel’s reasoning rules, we have solved Challenge 2. Indeed, Hazel includes reasoning
rules for both shallow and deep handlers, thus enabling the verification of programs with
delimited-control operators and continuations. In this chapter, we show that the Hazel
logic is sufficiently powerful to verify hh_invert, a HH version of invert (Chapter 1).
This verification is concisely documented in a published paper [dVP21].

3.1 Implementation

The implementation that we verify is the following translation of the OCaml code
from Figure 1.1 to HH :

1 (* Implementation of control inversion in HH. *)
2 let hh_invert iter = fun () ->
3 let yield = fun x -> do x in
4 deep-try iter yield with
5 ( fun x k -> cons (x, k)
6 | fun _ -> nil
7 )

Figure 3.1: Translation of invert (Figure 1.1) to HH .

There are three differences between the OCaml and the HH versions. First, HH is
untyped. We do not introduce the type of sequences and heads as in Figure 1.1. The
lazy-sequence constructors, cons and nil, are insted encoded using binary sums:

cons (x, k) ≜ inj1 (x, k)
nil ≜ inj2 ()

Second, in HH , effects are unnamed. We do not introduce an effect name Yield as in the
OCaml version; the function yield performs an unnamed effect “do x” instead. Third, in
HH , there is no special syntax to invoke a continuation: note that there is no continue
instruction to resume k in line 5 of the HH version.

Putting these differences aside, the two versions are very similar, so hh_invert can
be briefly explained. This function installs a deep handler over the application of iter,
an iteration method for a collection of elements, to yield, a function that performs an
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Specification of iteration methods

isIter iter ≜
2∀ I, Ψ, f.

2∀ us, u.
permitted (us ++ u) −−∗
Ius −−∗
ewp (f u) ⟨Ψ⟩{_. I(us ++ u)}

 −−∗
canTraverse −−∗
I[] −−∗
ewp (iter f) ⟨Ψ⟩{_. ∃ us. Ius ∗ complete us ∗ canTraverse}

Specification of lazy sequences

isSeq (k, us) ≜
ewp k () ⟨⊥⟩{h. isHead (h, us)}

isHead (h, us) ≜
match h with
| nil⇒ complete us ∗ canTraverse
| cons (u, k)⇒
permitted (us ++ u) ∗ ▷ isSeq (k, us ++ u)
| _⇒ False

Specification of hh_invert

2∀ iter, permitted , complete , canTraverse.
isIter iter −−∗
canTraverse −−∗
ewp (hh_invert iter) ⟨⊥⟩{k. isSeq (k, [])}

Figure 3.2: Specification of iteration methods, lazy sequences, and hh_invert.

effect as soon as it sees an element of this collection. If the handler intercepts an effect
thrown by yield, then the handler returns a cons head. The first component of this
head is the yielded element x, and the second component is the captured continuation k.
If the iteration terminates, then the handler returns a nil head.

3.2 Specification

The specification of hh_invert appears in Figure 3.2. It essentially translates the following
sentence to Hazel:

“hh_invert takes an iteration method iter as input
and produces a lazy sequence k as output.”

The predicates isIter and isSeq that appear in the specification of hh_invert as-
sign meaning to the phrases “iter is an iteration method ” and “k is a lazy sequence”,
respectively.
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A data structure t stores a certain collection of elements, that is, a (mathematical)
list of values xs. If iter is the iteration method of such a data structure t, then the
application of iter to an iteratee f starts a process by which f is applied to each value
in xs (the elements of xs are “fed” to f). The intuitive idea behind the predicates permitted
and complete, and the assertion canTraverse, is that they allow the expression of the
behavior of iter without ever mentioning this data structure t, which is thus implicit.
This idea originates from Filliâtre and Pereira’s work [FP16], and is later adapted to the
setting of Separation Logic by Pottier [Pot17]. Because the specification of hh_invert is
polymorphic on these predicates, the function hh_invert works on any data structure
that provides an iteration method iter fitting the interface isIter .

The predicate permitted holds of lists us whose elements could have been consumed
by iter, in the order they appear in this list, in a partial traversal of the data struc-
ture. This permissive interpretation of permitted allows this predicate to describe non-
deterministic traversals, where the order of elements consumed by iter is not known
in advance. Moreover, the choice of specifying the list of elements consumed, or seen,
rather than the list of elements that remain to be consumed, allows permitted to describe
traversals over infinite data structures. For example, if the structure stores the set of
nonnegative integers, then this predicate may state that us is a prefix of Z0≤ (the set of
nonnegative integers):

permittednonneg us ≜ ∃n ∈ Z0≤. us = [0, 1, . . . , n]

The predicate complete holds of lists us whose elements could have been consumed
by iter in a complete traversal of the data structure. For example, if the structure stores
a list of values xs, then one may leave the order of traversal unspecified by setting this
predicate to simply state that the list of consumed elements us and xs contain the same
elements:

completeset us ≜ ∀x. x ∈ us ⇐⇒ x ∈ xs

The assertion canTraverse is the permission to traverse the structure. Naturally, it is
part of hh_invert’s precondition, since this function performs call iter. As we shall see,
this permission is relinquished only when the sequence produced by hh_invert has been
exhausted ; that is, when the sequence produces a nil head. The permission to traverse
an ephemeral structure is often an ephemeral assertion, so that only one traversal can
happen at a time. Persistent data structures, on the other hand, might offer an interface
where the assertion canTraverse is persistent, thus allowing multiple traversals to occur
at the same time.

An example of such a persistent data structure is that of a persistent list l storing the
elements xs. This structure is specified by the binary predicate isList l xs, which states
that the values xs are layed out in the heap as a persistent linked list:

isList l (x :: xs) ≜ ∃ l′. l 7→2 inj1 (x, l
′) ∗ isList l′ xs

isList l [] ≜ l 7→2 inj2 ()

The persistent points-to predicate [VB21] l 7→2 v states that l is a read-only location that
stores v. It is a persistent assertion, and, consequently, so is the predicate isList .

A HH implementation of an iteration method for this structure could be written as
follows:
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(* Implementation of an iteration method for lists in HH. *)
let rec list_iter l f =

match !l with (fun (x, l) -> f x; list_iter l f | fun _ -> ())

For pedagogical purposes, let us say that one wishes to prove that list_iter l
is an iteration method for the structure l in the sense that list_iter l satisfies the
predicate isIter . Then, in this case, one must find particular instances of the predicates
and assertions permitted , complete, and canTraverse. The predicate permitted could be
chosen to say that, in a partial traversal of l, a prefix of xs must have been seen, thus
specifying that the order in which list_iter traverses l corresponds to the order of the
elements in xs. The predicate complete could be chosen to say that, upon termination
of the iteration, all the elements xs have been seen. Finally, the assertion canTraverse
could be chosen as the specification that l contains the elements xs . Here is the complete
set of definitions:

iterlist ≜ list_iter l
permitted list us ≜ ∃ vs. xs = us ++ vs
complete list us ≜ us = xs

canTraverse list ≜ isList l xs

Specification of iteration methods. The predicate isIter , which appears in Figure 3.2,
says, roughly, that, if the iteratee f can “take one step”, then iter f can “walk the entire
structure”.

The position of iter as it walks the structure is captured by the predicate I, which
holds of a list us , if the evaluation of iter f is in a state where the elements us have been
applied to the iteratee f . This predicate is called the loop invariant. The meaning of the
phrase “to take one step” can be captured in terms of this predicate I: it means to perform
an update from a state where Ius holds, for a certain list us, to a state where I(us ++ u)
holds, where us is incremented by one element u. The iteratee f is responsible for
performing such updates. This is expressed by f ’s specification, which appears as a
premise of iter’s specification in Figure 3.2. Indeed, the assertion Ius appears as a
precondition and the assertion I(us ++ u) appears as a postcondition of the application f u,
where us and u are universally quantified. Moreover, the assertion permitted (us ++ u)
also appears as a precondition of this application: if f has already consumed the elements
us , then f can assume that the next element u is one such that permitted (us ++ u) holds.

The phrase “to walk the entire structre” means to perform an update from a state
where I [] holds to a state where Ius holds and us is the complete list of elements of the
structure. This is expressed by the specification of the application iter f : the precondition
asserts that I [] holds, and the postcondition asserts that both Ius and complete us hold.
Moreover, the assertion canTraverse also appears as a pre- and postcondition of iter f :
the permission to traverse the structure is necessary to call iter, and this permission is
recoverable upon termination of iter.

There remains one last piece in the specification of iter: what are the effects performed
by iter f? Being able to answer this question is one of the main contributions of Hazel
and iter’s specification answers it as follows: iter f performs the same effects as f ;
in particular, iter f does not intercept f ’s effects and does not introduce new ones.
Higher-order functions that satisfy this property of being oblivious to the effects that an
argument function might perform are called effect-polymorphic. The way isIter expresses
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(IntroduceViews) True −−∗ ˙|⇛∃γ. iterViewγ us ∗ handlerViewγ us

(ConfrontViews) iterViewγ us −−∗ handlerViewγ vs −−∗ us = vs

(UpdateViews) iterViewγ us −−∗ handlerViewγ vs −−∗ ˙|⇛
{

iterViewγ ws ∗
handlerViewγ ws

Figure 3.3: Logical rules governing the assertions iterView and handlerView .

that iter is effect-polymorhphic is by universally quantifying over a protocol Ψ. The
specification essentially says that, if Ψ is a correct description of f ’s effects, then it is
also a correct description of the effects performed by the program iter f .

Specification of lazy sequences. Lazy sequences are specified by the combina-
tions of predicates isSeq and isHead , both of which appear in Figure 3.2. The predi-
cate isSeq (k, us) means that the elements us have already been produced and that k is
a sequence for the elements that remain to be produced. This predicate is defined as
a ewp assertion saying that the application of k to () yields a head h. Since ewp is an
affine assertion, a sequence is an ephemeral data structure: it cannot be used more than
once. This restriction is necessary, because a sequence produced by hh_invert is in fact
a one-shot continuation. The predicate isHead (h, us) states that h is a value constructed
either by cons or by nil. In the case of a nil head, the predicate asserts that the list us
contains all the elements of the structure – the assertion complete us holds – and that
the structure can again be traversed – the assertion canTraverse is recovered. In the
case of a cons (u, k) head, the predicate asserts that the path us ++ u is indeed permitted
by the structure – the assertion permitted (us ++ u) holds – and that k is a sequence for
the remaining elements. The later modality guarding the recursive occurrence of isSeq
ensures that this predicate is well-defined.

3.3 Verification

There are three key steps in the proof that hh_invert (Figure 3.1) satisfies its specifica-
tion (Figure 3.2):

1. The choice of the loop invariant I to reason about the application of iter.

2. The choice of the protocol by which the function yield abides.

3. The application of the reasoning rule for deep handlers (rule TryWithDeep).

Let us postpone the choice of I and shift our attention to the choice of yield ’s protocol.
Because yield assumes the role of the iteratee, it must satisfy the following specification:

2∀ us, u. permitted (us ++ u) −−∗ Ius −−∗ ewp (yield u) ⟨Ψ⟩{_. I(us ++ u)} (3.1)

Since yield is simply defined as a single do instruction, the preceding specification is already
an expression of the protocol by which yield abides: when performing an effect, yield is
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in a state where the assertions permitted (us ++ u) and Ius hold; moreover, when yield
resumes, it expects the assertion I(us ++ u) to hold. Therefore, the choice of yield ’s
protocol comes naturally as a restatement of its specification:

Ψ ≜ ! us u (u) {permitted (us ++ u) ∗ Ius}. ? (()) {I(us ++ u)} (3.2)

To show that, under this protocol, the function yield satisfies Specification 3.1 is a simple
exercise: it suffices to apply Hazel’s reasoning rule for performing an effect, rule Do.

The choice of the predicate I comes as part of our solution to the following problem:
to express that handler and handlee see the same set of elements. This statement relies on
the intuitive notion of what handler and handlee see. The handlee “iter yield ” sees the
elements of the collection that are fed to yield . The handler (lines 4 to 6) sees the elements
of the collection that come as payload of the effects that it intercepts. To formalize this
intuition, we introduce a ghost cell γ whose contents belong to the following camera:

Auth(Ex(List Val))

The idea is then to formalize the set of elements vs seen by the handler, the handler’s view,
as the ownership of the authoritative piece • ex(vs), and to formalize the set of elements us
seen by the handlee, the handlee’s view, as the ownership of the fragment piece ◦ ex(us).
We enforce this abstraction by introducing the predicates iterView and handlerView
defined as follows:

iterViewγ us ≜ ◦ ex(us)
γ

handlerViewγ vs ≜ • ex(vs)
γ

The crucial property of this choice of camera is that, because elements of the ex-
clusive camera Ex(List Val) do not split, the fragment piece is unique and must there-
fore coincide with the authoritative piece; that is, if both the assertions iterViewγ us
and handlerViewγ vs hold, then us = vs. This reasoning formalizes the intuition that
handler and handlee’s views are in agreement.

This reasoning is captured by rule (ConfrontViews), which appears in Figure 3.3
among other logical rules. Rule (IntroduceViews) can be used to introduce the ghost
cell γ at the beginning of the verification of hh_invert. Rule (UpdateViews) allows the
update of γ’s state, thus also allowing the update of handler and handlee’s views.

The proof follows by choosing loop invariant I to indicate iter’s view:

I : List Val → iProp ≜ iterViewγ

Specializing iter’s specification (Figure 3.2) with this choice of loop invariant and with
yield as the iteratee leads to the following specification of the application “iter yield ”:

canTraverse −−∗
iterViewγ [] −−∗
ewp (iter yield) ⟨Ψ⟩{_. ∃ us. iterViewγ us ∗ complete us ∗ canTraverse}

Both the assertions canTraverse and iterViewγ [] are transferred by hh_invert to iter.
Therefore, the application iter yield is safe and abides by the protocol Ψ (Equation 3.2):

ewp (iter yield) ⟨Ψ⟩{_. ∃ us. iterViewγ us ∗ complete us ∗ canTraverse} (3.3)
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The protocol Ψ can thus be seen as the contract established between handler and handlee
from line 4. The application of rule TryWithDeep to verify this handler yields two goals:
(1) the verification of the handlee, and (2) the derivation of the corresponding handler
judgment. The first goal is fulfilled by Specification 3.3. The second goal has the following
shape:

handlerViewγ [] −−∗
deep-handler ⟨Ψ⟩ {_. ∃us. iterViewγ us ∗ complete us ∗ canTraverse}

(fun x k -> cons (x, k) | fun _ -> nil)
⟨⊥⟩ {h. isHead (h, [])}

The assertion handlerViewγ [] is transferred by hh_invert to the handler, justifying it
to appear as an assumption of the derivation of this goal. The proof follows by Löb’s
induction. However, before the application of this induction principle, the statement
needs to be slightly generalized:

∀ vs.

handlerViewγ vs −−∗
deep-handler ⟨Ψ⟩ {_. ∃us. iterViewγ us ∗ complete us ∗ canTraverse}

(fun x k -> cons (x, k) | fun _ -> nil)
⟨⊥⟩ {h. isHead (h, vs)}

(3.4)

The generalized statement says that, if the elements in the list vs have been yielded to
the handler, then the handler is able to produce a head h such that isHead (h, vs) holds.
The application of Löb’s induction transforms Statement 3.4 into the following goal:

▷ (3.4) =⇒ (3.4)

The handler judgment in the conclusion of Statement 3.4 is the conjunction of two
specifications: the specification of the effect branch (line 5) and the specification of the
return branch (line 6). These specifications are established separately. The two key
steps in the verification of the effect branch are the application of rule (UpdateViews), to
update γ with the new element that has been yielded; and the use of the k’s specification,
which is given by the protocol Ψ. The specification of k has a handler judgment as part of
its precondition. To satisfy this constraint, it suffices to apply the copy of Statement 3.4
introduced by Löb’s induction. The key step in the verification of the return branch is
the application of rule (ConfrontViews), to show that, upon termination of iter, all the
elements have been yielded to the handler. This concludes the proof of hh_invert.

3.4 Related work

Filliâtre and Pereira [FP16] introduce the predicates enumerated and completed as the
main ingredients of a uniform approach to specify the traversal of data structures. Let
us introduce the term iteration-predicate approach to identify Filliâtre and Pereira’s
methodology.

Initially, the authors wish to apply the iteration-predicate approach to cursors [Cop92].
A cursor (or an iterator [LG01]) in Java [GJSB00] or C++ [Str95] is an object that performs
the traversal of a given collection. One may accept this suggestive name and think of a
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cursor c as hovering over an element of a structure. To manipulate a cursor, one has access
to a function named next. The action of the operation next c is twofold: (1) it returns
the element over which c hovers and (2) it advances c to the next element (if there is one).
Filliâtre and Pereira’s idea is then to introduce enumerated and completed as predicates
on cursors to specify the state of a cursor. The assertion “enumerated c” expresses the
conditions under which the cursor c is in a valid state, whereas the assertion “completed c”
expresses the conditions under which the cursor c completes the traversal of the structure.
These definitions vary according to the structure being traversed. Filliâtre and Pereira
show many instances of such definitions. Later, the authors apply this approach to the
specification of higher-order iteration methods. The straightforward way to specify an
iteration method in a higher-order program logic is to quantify over the specification
of the iteratee, as we do in this chapter (Figure 3.2). However, the authors study the
iteration-predicate approach in the setting of Why3 [FP13], a verification tool that offers
an interface for writing specifications in first-order logic. To circumvent this limitation
of first-order logic, the authors propose an inventive solution in which an application of
an iteration method iter is translated to a first-order program using a “fictional” cursor.
Moreover, to verify the implementation of such an iteration method iter, their solution
asks the verification of a specialized version of iter, where the iteratee is a function that
adds the consumed element to a memory cell of visited elements.

The iteration-predicate approach is further studied by Pottier [Pot17], who verifies the
implementation of a hash table using CFML [Cha11, Cha22]. CFML consists of a higher-
order Separation Logic embedded in Coq and of a tool that links OCaml implementations
to this theory by translating a program to its characteristic formula, a logical formula
describing the semantics of this program. In the setting of a higher-order Separation
Logic, Pottier applies the iteration-predicate approach to write natural specifications
of higher-order iteration methods. Moreover, he introduces the specification of lazy
sequences, which he calls cascades. The specifications of iteration methods and lazy
sequences that appear in Figure 3.2 of this chapter adapt Pottier’s specifications to Hazel.
There are three main differences. The first one is the inclusion of protocols. Another
difference is that we can avoid the existential quantification used by Pottier to define the
specification of lazy sequences. He employs this existential quantification to define the
corresponding version of isSeq as a co-inductive predicate. We can avoid this trick by
exploiting Iris’s native support for guarded recursion. Finally, Pottier’s version of isSeq is
a duplicable predicate, while ours is ephemeral. This aspect of our specification is crucial
to enforce that a captured one-shot continuation is not invoked twice.



Chapter 4

Asynchronous Computation

Concurrency, the simultaneous execution of multiple processes, is a pervasive concept in
Computer Science. It appears in applications such as network systems, where a program
opens connections with multiple parties in the network, or in operating systems, where a
program communicates with the outside world by writing and reading files. Asynchronous
computation is one approach to complete such concurrent tasks. It consists of a sequential
program, the scheduler, which orchestrates the execution of tasks. Many programming
languages, such as JavaScript [MMT08, GSK10, Ecm22] and C# [Cor22], add support for
asynchronous computation by incorporating new programming constructs, thus adding
more effort for understanding and maintaining the language. With effect handlers, on the
other hand, it is possible to implement asynchronous computation as a library. Dolan et
al. [DEH+17], for instance, use effect handlers to implement an asynchronous-computation
library in Multicore OCaml. In this chapter, we study a simplified version of this library.
The exercise of specifying and verifying this library is yet another demonstration of
the applicability of Hazel. The verification of this library is presented in a published
paper [dVP21].

4.1 Implementation

Before we delve into the details of the HH implementation of the asynchronous-computation
library that appears in Figure 4.1, let us establish the informal contract by which a user
can exploit this library.

The informal contract relies on two abstractions: fibers and promises. A fiber is a
programming concept related to the concepts of lightweight threads, user threads, or green
threads. In short, fibers are processes that run asynchronously : at most one fiber runs
at a time. Moreover, every fiber is associated to a unique object called a promise. A
promise serves as a place holder for the result of the fiber. When a fiber is spawned (i.e.,
when it begins its execution), its associated promise p is created. Initially, the promise
does not store any value, and it is so characterized as being in an unfulfilled state. The
promise upholds this status until its corresponding fiber terminates. When the fiber
terminates, producing a result value y, the promise shall store this value. The promise is
then characterized as being in a fulfilled state.

The library offers two operations for manipulating fibers and promises. The instruc-
tion async e (1) spawns a new fiber that executes the application e (), and (2) returns the
promise associated to this fiber. The instruction await p checks the state of the promise p
and then proceeds in one of two manners. If the promise is fulfilled, then the operation
immediately returns with the value stored in p. If the promise is unfulfilled, then the
operation blocks until p becomes fulfilled. Finally, the library offers a function run, the
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1 let async e = do (Async e)
2 let await p = do (Await p)
3 let run main =
4 let q = create_queue () in
5 let next() =
6 if not (is_empty q) then
7 let k = take q in k()
8 in
9 let rec fulfill p e =

10 deep-try e() with
11 (* Effect branch. *)
12 ( fun request k ->
13 match request with
14 ( fun (* Async. *) e’ ->
15 let p’ = ref (Waiting []) in
16 add (fun _ -> k p’) q;
17 fulfill p’ e’
18 | fun (* Await. *) p ->
19 match !p with
20 ( fun (* Waiting. *) ks ->
21 p := Waiting (k :: ks);
22 next()
23 | fun (* Done. *) y ->
24 k y
25 )
26 )
27 (* Return branch. *)
28 | fun y ->
29 match !p with
30 ( fun (* Waiting. *) ks ->
31 p := Done y;
32 list_iter ks (fun k -> add (fun _ -> k y) q);
33 next()
34 | fun (* Done. *) _ ->
35 () () (* Unreachable! *)
36 )
37 )
38 in
39 fulfill (ref (Waiting [])) main

Figure 4.1: Asynchronous-computation library in HH .
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scheduler, which orchestrates the fibers spawned during the execution of a program main
that is passed as an argument.

Now, we wish to explain the operational behavior of an arbitrary execution of run.
Even though the dynamic behavior of run is quite complex – the implementation of run
exploits, for instance, effect handlers, dynamically allocated mutable state, and higher-
order functions – it has a strikingly similarity to the staging of an exquisite theatrical
play, The Fibers’ Odyssey. So let us tell what we recall from this play in the hope that it
makes the implementation of the library clear.

The stage of this play was divided into three sections: a first one occupying the left
portion of the stage, a second one occupying the center, and a third one occupying the
right portion of the stage. In the left portion, there was a queue of actors, where every
actor held a torch. In the right portion, there were multiple torch stands. Every actor had
the goal of placing his torch on a torch stand uniquely identified by his name. To achieve
this goal, an actor in the queue must traverse the center portion of the stage. However,
at most one actor could occupy this portion of the stage at a time. The director of the
play was responsible for maintaining the order. He would allow an actor from the queue
to occupy the center of the stage only when this portion was free.

During an actor’s traversal to his stand, it was often the case that his torch would
lose its flames. In such cases, the actor had the right to perform the following move: he
would (1) memorize his position in the stage, (2) skip his way to the right portion, (3)
borrow the flames from a torch in one of the stands, (4) return to the position where he
left, and (5) resume his traversal. To play this move, however, the actor had to choose in
advance the stand to which he intended to go. The problem is that stands were hidden
in such a way that it was impossible for an actor to know whether or not the stand was
already fulfilled with its promised torch. Therefore, if the actor decided to play this move,
then he would have to try his chance. If he was lucky, then the actor would resume the
traversal with his lightened torch. If he was unlucky, then he would have to keep waiting
in the stand for the actor responsible for fulfilling it. There, he might find other waiting
actors who were struck by the same lack of luck. When the actor responsible for this
stand finally arrived with the promised torch, all the waiting actors were freed. They
would then go to the end of the queue to wait for another chance to traverse the stage.

Another source of misfortune during an actor’s traversal to his stand was exhaustion.
In such cases, the actor could promote someone in the audience to become an actor. The
old tired actor would then go to the end of the queue, while the director would forge a
new torch and a new stand to the new actor, who would immediately occupy the stage
and start his traversal to the stand.

The play ended when there were no more actors waiting in the queue.
As it might already be clear, actors represent fibers, the director represents the

scheduler, a torch represents the result of a fiber, and a stand represents a promise. Like
an actor, a fiber must complete a task. During the completion of the task, a fiber can
either spawn a new fiber – “to promote someone in the audience to become an actor ” – or
it can wait for the completion of another fiber – “to wait for another actor’s torch”.

The implementation of the operations await, async, and run appears in Figure 4.1. It
assumes the existence of operations for manipulating queues (create_queue, add, take,
and is_empty) and operations for manipulating lists ( [], _ ::_, and list_iter). The
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assumed formal specifications of both sets of operations appear in Figures 4.4 and 4.5.
We discuss these specifications further in Section 4.2.

Informally, the instruction create_queue() allocates a new queue and returns its
address q ; the instruction add v q adds the element v to the queue q ; the instruction take q
removes and returns an element of the queue q , if the queue is nonempty; finally, the
instruction is_empty q returns a Boolean indicating whether q is empty.

The sets of constructors Waiting/Done and Async/Await that appear in Figure 4.1
are encoded in HH using binary sums:

Async e ≜ inj1 e
Await p ≜ inj2 p

Waiting ks ≜ inj1 ks
Done y ≜ inj2 y

The function run, the scheduler, executes in four steps. The first step is to allo-
cate a queue (line 4) to store ready fibers, fibers that can be resumed. (In the play,
this queue represented by the queue of actors.) The second step is to define the func-
tion next (line 5), which runs a ready fiber taken from the queue. The third step is to
define the function fulfill (line 9), which runs a fiber e to fulfill its promise p. (This
operation represented by the traversal of an actor towards his stand.) A promise p is a
memory location storing either the value Waiting ks, where ks is a list of waiting fibers;
or the value Done y, where y is the result of its corresponding fiber. The fourth and final
step (line 39) is to call fulfill with the main fiber main.

Now, let us discuss the implementation of the function fulfill (line 9). The execution
of the instruction fulfill e p begins with the application e() (line 10). The scheduler
monitors this application by installing a handler. If the fiber e terminates, then it must
be the case that p stores a list ks of waiting fibers. (Exploiting the play analogy, this
argument follows from the fact that torches are unique. If the promise was already fulfilled,
then it would mean that an actor finds his own stand already carrying a torch.) The
fiber writes its output y to p (line 31), then the list of waiting fibers is sent to the queue
(line 32), and finally the scheduler runs a fiber taken from the queue (line 33).

If, during the execution of e(), the instruction async e is performed, then the fiber is
paused and reified as the continuation k. The scheduler then add this continuation to
the queue (line 16), and then sets a new fiber e (pay attention to the shadowing of the
name e) to run with a fresh promise (line 17).

If, during the execution of e(), the instruction await p is performed, then the
scheduler checks the state of the promise p. If p is fulfilled with a value y, then the fiber
is immediately resumed with this value (line 24). If p is unfulfilled, then scheduler adds k,
the paused fiber, to the list of waiting fibers (line 21), and runs a fiber taken from the
queue (line 22).

Deadlock. The function run terminates when there are no more fibers in the queue.
However, there might be unfulfilled promises and there might be fibers waiting for
these unfulfilled promises. This situation is called a deadlock. It typically arises when
there is a dependency cycle among fibers; that is, a positive integer n and a set of
fibers {fi}0≤i<n, such that, for every i, the fiber fi waits for the completion of the fiber fj ,
where j = i+ 1 (mod n). The following program induces such a behavior:
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1 (* Example of deadlock. *)
2 let yield () = async (fun _ -> ())
3 let main() =
4 let r = ref (inj1 ()) in (* Create channel. *)
5 let rec f() =
6 match !r with
7 ( fun _ -> yield (); f() (* Yield control to [main]. *)
8 | fun p -> await p (* Wait for one ’s own completion. *)
9 )

10 in
11 let p = async f in (* Obtain [f]’s promise. *)
12 r := inj2 p (* Send [p] through the channel. *)
13 let _ = run main

Figure 4.2: Example of a client that induces a deadlock.

The fiber main spawns a fiber f that waits its own completion, thus creating a
singleton cycle of waiting fibers. The idea is to use the store as a channel through
which main communicates f ’s promise. The fiber f listens to this channel, and obtains
its own promise.

In line 4, main allocates a reference r, initially holding a dummy value inj1 (). Then,
in line 11, it spawns the fiber f , thereby obtaining f ’s promise p. When f is spawned,
the execution of main is suspended and control is relinquished to f (the single fiber in
the scheduler’s queue).

The fiber f implements a loop that checks whether r already contains its own promise p.
When it first starts its execution, the reference r contains the value inj1 (). Therefore,
the pattern matching in line 6 causes the execution of its first branch. This branch
starts with the execution of the instruction yield, which has the effect of (1) pausing the
execution of f , (2) sending the suspended fiber f to the queue, and (3) yielding control
to main. 1

The fiber main resumes its execution from line 12, where it writes f ’s promise p to r.
When main terminates, the scheduler takes f from the queue and resumes the execution
of this fiber. This time, when f checks the state of r, it finds its own promise p. Therefore,
the pattern matching in line 6 now causes the execution of its second branch. This branch
contains the instruction await p, which causes f to wait for its own completion.

4.2 Specification

The formal specification of the library appears in Figure 4.3. It depends on a predi-
cate isPromise and a protocol Coop, both of which are abstract notions of the library’s
interface: a user can ignore their definition.

The assertion isPromise pΦ states that, if the promise p is fulfilled, then p holds a
value that satisfies the predicate Φ. The predicate isPromise is persistent, therefore the
library allows promises to be duplicated and shared among fibers.

1The instruction yield is implemented in line 2. The meaning that we assigned to yield depends on
the assumption that the scheduler’s queue organizes elements in a first-in-first-out manner (FIFO).
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isPromise : Val→ (Val→ iProp)→ iProp Coop : Protocol

persistent(isPromise pΦ)

Async
ewp e() ⟨Coop⟩{y. 2Φ(y)}

ewp (async e) ⟨Coop⟩{p. isPromise pΦ}

Await
isPromise pΦ

ewp (await p) ⟨Coop⟩{y. 2Φ(y)}

Run
ewp main() ⟨Coop⟩{_. True}
ewp (run main) ⟨⊥⟩{_. True}

Figure 4.3: Specification of the asynchronous-compuation library.

isList : Val→ List Val→ iProp

Nil
isList [] []

Cons
isList l vs

ewp (v :: l) ⟨⊥⟩{l ′. isList l ′ (v :: vs)}

ListIter
isList l vs I[] 2∀ us, u. I(us) −−∗ ewp (f u) ⟨Ψ⟩{_. I(us ++ u)}

ewp (list_iter l f) ⟨Ψ⟩{_. isList l vs ∗ I(vs)}

Figure 4.4: Specification of a list library.

Specification Async states that performing the operation async e yields a promise p,
such that isPromise pΦ holds. The predicate Φ is the postcondition of e. Because
promises are duplicable, the library requires this predicate to describe only duplicable
resources. This requirement is expressed by the persistently modality that guards e’s
postcondition.

Specification Await states that, if the assertion isPromise pΦ holds, then the opera-
tion await p returns a value y such that the assertion 2Φ(y) holds.

Specification Run states that run correctly implements the operations of the library: (1)
the protocol Coop specifying the application main() means that the functionalities async
and await become available to main, and (2) the protocol ⊥ specifying the application
application run main means that the effects performed by main are handled by run.

The correctness statement of the library is stated as follows:

Statement 4.1 (Correctness of the library) There exists a predicate isPromise and
a protocol Coop, such that isPromise is persistent and the operations async, await,
and run satisfy their formal specifications (Figure 4.3).

We present the proof of this statement in Section 4.3. The proof assumes that the
operations for manipulating lists satisfy the specifications from Figure 4.5 and that the
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isQueue : Val→ (Val→ iProp)→ Bool → iProp

CreateQueue
ewp (create_queue ()) ⟨⊥⟩{q . ∀ I. isQueue q I true}

IsEmpty
isQueue q I _

ewp (is_empty q) ⟨⊥⟩{b. isQueue q I b}

Take
isQueue q I false

ewp (take q) ⟨⊥⟩
{v. I v ∗ isQueue q I true}

Add
isQueue q I _ I v

ewp (add q v) ⟨⊥⟩
{_. isQueue q I false}

Figure 4.5: Specification of a queue library.

operations for manipulating queues satisfy the specifications from Figure 4.4. Let us
briefly discuss each of these logical interfaces.

The interface for manipulating lists (Figure 4.4) depends on an abstract representation
predicate isList , a predicate relating a value l to a mathematical list of values vs. The
specifications of the list constructors, [] and _ ::_, are standard. The specification of the
list iteration method, list_iter, can be seen as a specialized case of the predicate isIter ,
discussed in Chapter 3. Indeed, given a value l and a list vs, Specification ListIter
corresponds to the assertion isIter (list_iter l) where the iteration predicates are defined
as follows:

permitted _ ≜ True
complete us ≜ us = vs

canTraverse ≜ isList l vs

The intuitive reading of rule ListIter is that, if f can “process” single arbitrary elements
of the list, then the application list_iter l f can “process” the entire list vs.

The interface for manipulating queues (Figure 4.5) depends on an abstract representa-
tion predicate isQueue, which relates a value q to a predicate I and a Boolean b. The
predicate I is the queue invariant, it describes a property that holds of every element in
the queue. The Boolean b is a partial answer to the question: is the queue empty? If b
is false, then the queue is nonempty. However, if b is true, then nothing can be said.

Rule CreateQueue states that the instruction create_queue() returns a new queue q
such that the assertion ∀ I. isQueue q I true holds. This assertion lets one choose the
queue invariant after the creation of the queue, thus allowing I to depend on q . We need
this flexibility in the verification of the library, because a fiber in a queue q may modify q
once it resumes its execution. Therefore, the description of fibers in the queue depend
on the queue itself. A similar situation arises in Timany and Birkedal’s work [TB19,
Section 5.1].

Rule IsEmpty allows one to reify the Boolean argument of a isQueue assertion.
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(ForgeTorch) True −−∗ ˙|⇛∃γ. torchγ

(ClaimUniqueness) torchγ −−∗ torchγ −−∗ False

Figure 4.6: Logical rules governing the assertion torch.

(IntroduceMap) True −−∗ ˙|⇛∃δ. promiseMap∅

(UpdateMap) promiseMapM −−∗ ˙|⇛
{

promiseMap (M ⊔ {(p, γ) 7→ Φ}) ∗
isMember p γ Φ

(ClaimMembership) promiseMapM −−∗
isMember p γ Φ −−∗ ∃Φ

′.

{
{(p, γ) 7→ Φ′} ∈M ∗
▷∀ y. Φ(y) =iProp Φ′(y)

Figure 4.7: Logical rules governing the assertions promiseMap and isMember .

Rule Take states that, if the queue q is nonempty, then the instruction take q returns
an element v that satisfies the queue invariant. After taking one element, the information
that the queue is nonempty is lost.

Rule Add states that a value v can be added to the queue if v satisfies the queue
invariant. After adding an element, one learns that the queue is nonempty.

4.3 Verification

If we assume that the predicate isPromise is given, then the definition of the protocol Coop
and the verification of the operations async and await are trivial. Indeed, the definition
of Coop in terms of the predicate isPromise appears in Figure 4.8. It is defined as the sum
of the protocols Async and Await , both of which simply rephrase the specifications Async
and Await as send-receive protocols. The only difference between the protocol Async and
the specificatioon Async is the inclusion of a later modality over the occurrence of ewp.
This modality is used to ensure that the recursive protocol Coop is well-defined. It poses
no problem to the verification of async.

The core of the verification is thus the definition of a persistent predicate isPromise
and the proof of run. The key idea for both the definition of this predicate and the proof
of run is the introduction of a ghost cell δ holding the set of promises allocated during
the execution of run. We conceive the camera to which the contents of this cell belong in
such a way that the state of the cell is monotonic: it only grows over time. From this
monotonicity property, it follows that claiming membership to the set of promises held
by this ghost cell is a persistent assertion: once a new promise has been added to the
set, it cannot be removed, therefore, once a claim of membership holds, it holds always.
Therefore, we define the predicate isPromise as the claim of membership to this set.

The ghost variable δ intuitively holding the set of promises allocated during the
execution of run is formalized as holding an element of the following authoritative camera:

Auth(P ) where P ≜ (Loc ×GName) fin−⇀ Ag(▶(Val → iProp)) (4.1)
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Definition of the protocol Coop.

Coop ≜ Async +Await

Async ≜ ! eΦ (Async e) {▷ ewp (e ()) ⟨Coop⟩{y. 2Φ(y)}}. ? p (p) {isPromise pΦ}
Await ≜ ! pΦ (Await p) {isPromise pΦ}. ? y (y) {2Φ(y)}

Definition of the predicate ready.

ready q Φ k ≜ ∀ y.


2Φ(y) −−∗
▷ promiseInv q −−∗
▷ isQueue q (ready q (λ y. y = ()) )_ −−∗
ewp (k y) ⟨⊥⟩{_. True}

Definition of the predicate promiseInv .

promiseInv q ≜ ∃M. promiseMapM ∗

∗{(p,γ)7→Φ}∈M . ∨



∃ y.

 p 7→ Done y ∗
2Φ(y) ∗
torchγ


∃ l , ks.

 p 7→ Waiting l ∗
isList l ks ∗
∗k∈ks . ready q Φ k


Figure 4.8: Definitions used in the verification of run.

An element of P is a finite map from pairs of promises and ghost variables to predicates.
Therefore, the variable δ can in fact be seen as holding a set of promises where each
promise p is associated to a ghost name γ and a predicate Φ. The name γ is the
unique token associated to the fiber that must fulfill p, and the predicate Φ is the fiber’s
postcondition. We introduce two assertions for describing the state of δ:

promiseMapM ≜ •M δ

isMember p γ Φ ≜ ◦ {(p, γ) 7→ Φ} δ

The assertion promiseMapM claims that the authoritative piece of δ is the finite
map M . This assertion is a non-duplicable. The assertion isMember p γ Φ claims that the
entry {(p, γ) 7→ Φ} belongs to the authoritative piece of δ. This assertion is persistent.

The logical rules induced by these definitions appear in Figure 4.7. Rule (IntroduceMap)
allows the introduction of the variable δ at the beginning of the execution of run. Naturally,
the initial state of this variable is the empty map ∅. Rule (UpdateMap) lets one update
the contents of δ with a new entry {(p, γ) 7→ Φ}, provided that the key pair (p, γ) does not
belong to M . 2 The application of this rule not only updates δ but it also yields a receipt
that the new entry has been effectively added to the map. Indeed, the conclusion of the
rule states that the assertion isMember p γ Φ holds. Rule (ClaimMembership) expresses

2The infix operation _ ⊔ _ denotes disjoint map union.
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the idea that, because the map M stored in δ only grows over time, an added entry cannot
be removed from M . Indeed, if one has the receipt isMember p γ Φ, then the pair (p, γ) is
a key of M . Moreover, the predicate Φ′ bound by (p, γ) in M is almost the predicate Φ
specified by the assertion isMember . The assertion ▷∀ y. Φ(y) =iProp Φ′(y) means that Φ
and Φ′ may differ at the current step of execution, but become indistinguishable in the
next step and afterwards. 3 This restriction is a consequence of the higher-order nature
of the camera P (Eq. 4.1), which depends on the type of logical assertions iProp. Naively
supporting such higher-order cameras leads to a circularity paradox [JKJ+18, Section 4.1].
Therefore, Iris imposes restrictions to support higher-order cameras in a sound manner.
An approach to comply to Iris’s restrictions is to guard occurrences of iProp in the
definition of a camera by the type-level later constructor ▶ : OFE→ OFE. 4 An equality
assertion between elements in the codomain of ▶ is only usable after one step of execution.
For this reason, the equivalence between Φ and Φ′ holds only after one step of execution.

There is one more flavor of ghost state that comes up in the proof. Its purpose is to
formalize the argument that the blocking operation from line 35 can never occur, because,
when a fiber terminates, it cannot find its own promise already fulfilled. The key to
formalize this reasoning is to introduce a logical assertion torchγ , claiming ownership
over the unique piece of a ghost variable γ. The variable γ can thus be seen as a unique
token. The assertion torchγ is forged with a fresh token γ immediately before a fiber
starts running. The fiber holds possession of the assertion torchγ until the completion of
its task, then it relinquishes ownership of torchγ to its promise.

If every fiber conforms to this discipline, then we can prove, by contradiction, that
the blocking operation from line 35 does never occur. Indeed, assume that a fiber finds
its promise p already fulfilled. This means that p owns torchγ . However, the fiber itself
owns the assertion torchγ . This constitutes a contradiction, because the assertion torchγ

cannot be duplicated.
The definition of torchγ is straightforward. We let the contents of γ range over an

exclusive camera, such as
Ex({•}),

and set the assertion torchγ to claim ownership over a piece of γ:

torchγ ≜ ex(•)
γ

Recall that the elements of an exclusive camera do not split, therefore γ has a
unique piece, and claiming ownership over this piece suffices to ensure that torchγ is non-
duplicable. This property is formally expressed by rule (ClaimUniqueness) from Figure 4.6.
The other rule from this figure, rule (ForgeTorch), states that one can always pick a fresh
variable γ.

With the introduction of δ and its related assertions promiseMap and isMember , we
are in position to define the predicate isPromise and to introduce the key invariant used

3The assertion P =iProp Q holds of a step-index n, if the propositions P and Q are equivalent for every
step-index less than or equal to n. The definition of _ =iProp _ follows from its interpretation given
in [Tea22, Section 6] and from the definition of a step-indexed equivalence on UPred given in [Tea22,
Section 3.3].

4The type OFE denotes the type of ordered families of equivalences [JKJ+18, Section 4.2]. An ordered
family of equivalences is a set equipped with a step-indexed equivalence relation.
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in the verification of run. The predicate isPromise is defined as follows:

isPromise pΦ ≜ ∃ γ. isMember p γ Φ

This definition captures the intuitive reading of isPromise pΦ: that some fiber must fulfill
the promise p with a value that satisfies Φ.

The proof invariant in the verification of run is an assertion that links the logical
map M to the contents of the physical addresses of promises. The specification of a
fiber depends on this assertion, because, upon termination, a fiber must have permission
to write its result to its promise. In particular, a fiber in the queue relies on the proof
invariant. For this reason, the proof invariant promiseInv q is an assertion that depends
on the queue q created in line 4, and its formal definition depends on the predicate
describing fibers in the queue, the queue invariant. The queue invariant is defined as a
special case of the assertion ready q Φ k, which states that the fiber k can resume when
supplied with a value satisfying Φ. Fibers in the queue are ready to resume when applied
to (). Therefore, the predicate ready q (λ y. y = ()) must hold of every fiber in the queue.
This predicate is thus the queue invariant, which we denote by I for short:

I ≜ ready q (λ y. y = ()) (4.2)

The formal definitions of promiseInv and ready appear in Figure 4.8. The asser-
tion promiseInv q states that every entry in the logical map M corresponds to a spawned
fiber. Indeed, for every entry {(p, γ) 7→ Φ} in M , the promise p is a valid memory location
in one of two states. It can be either (1) fulfilled, in which case it owns the assertion torchγ

and contains a value that satisfies Φ; or (2) unfulfilled, in which case it contains a list of
waiting fibers ready to resume with a value that satisfies Φ.

The definition of ready q Φ k captures the informal reading that k can be resumed
when applied to a value that satisfies Φ. It also states that k performs no effects and that k
relies on the permission to modify the queue and on the permission to modify the contents
of promises. The permission to modify the queue is given by the assertion isQueue q I _,
and the permission to modify promises is given by the invariant promiseInv q . Because
both assertions include references to ready , this predicate is recursively defined, and,
consequently, both of these assertions must be guarded by a later modality.

Now that all the logical definitions are laied out, let us discuss the proof that run
satisfies the specification Run (Figure 4.3). At the beginning of the execution of run,
the queue is allocated, and the assertion isQueue q I _ holds (recall the definition of
the queue invariant I given in Equation 4.2). Rule (IntroduceMap) then introduces the
assertion promiseMap∅, which trivially entails the invariant promiseInv q . (It suffices to
instantiate the existentially quantified map M with ∅.)

The next step is the definition of the function next (line 5), whose specification is
given by the following lemma:

Lemma 4.1 (Specification of next) The function next admits the following specifi-
cation:

promiseInv q −−∗ isQueue q I _ −−∗ ewp next() ⟨⊥⟩{_. True}

The assertion isQueue is needed because next tries to remove a fiber from the queue.
The invariant promiseInv is needed to feed the eventual fiber that comes out from q .



50 4. Asynchronous Computation

This lemma follows easily from the specification of the fibers in q given by the queue
invariant (Eq. 4.2).

The definition of the function fulfill comes next. Specifying and verifying this
function is the essence of the proof. The specification of fulfill is given by the following
lemma:

Lemma 4.2 (Specification of fulfill) The function fulfill admits the following
specification:

∀ e, p, γ, Φ.



promiseInv q −−∗
torchγ −−∗

isMember p γ Φ −−∗
isQueue q I _ −−∗

ewp (e ()) ⟨Coop⟩{y. 2Φ(y)} −−∗
ewp (fulfill p e) ⟨⊥⟩{_.True}

This specification states that, for every fiber e conforming to the protocol Coop and
satisfying the postcondition Φ, if p is a promise that expects to be fulfilled with a value
that satisfies Φ, then the instruction fulfill p e is safe and performs no effects.

The assertion isMember p γ Φ captures the implicit link between p and Φ. The token γ
is the identifier of the assertion torchγ , whose ownership is threaded through the execution
of e until termination, when it is transferred to p.

Both the assertions isMember and torch are created at the moment a promise is
allocated. The following lemma formalizes this claim:

Lemma 4.3 (Promise allocation) The allocation of a fresh promise admits the follow-
ing specification:

∀Φ.


promiseInv q −−∗

ewp (ref (Waiting [])) ⟨⊥⟩
{p. promiseInv q ∗ ∃ γ. torchγ ∗ isMember p γ Φ}

The derivation of this lemma combines several logical steps. First, the allocation of a fresh
promise p yields a points-to assertion p 7→ Waiting []. Second, the invariant promiseInv
is open: the leading existential quantifier is destructed, thus introducing an abstract
promise map M . Third, rule (ForgeTorch) introduces the assertion torchγ for a fresh
token γ. Fourth, rule (UpdateMap) updates M with the new entry {(p, γ) 7→ Φ} (which
must be disjoint from M because p is fresh), thus introducing the assertion isMember p γ Φ.
Finally, the invariant promiseInv is close: the existentially quantified map is instantiated
with the updated map M ⊔ {(p, γ) 7→ Φ}.

Because fulfill is a recursive function, it is natural that the derivation of its
specification (Lemma 4.2) starts with the application of Löb’s induction principle. It then
follows with the application of the reasoning rule for deep handlers, rule TryWithDeep,
to reason about the handler from line 10. The assertion ewp e() ⟨Coop⟩{y. 2Φ(y)},
which is part of the precondition of this lemma, dispatches one of the two premises of
the rule. The other premise is a deep-handler judgment assertion corresponding to the
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following statement:

∀ p, γ, Φ.



promiseInv q −−∗
torchγ −−∗
isMember p γ Φ −−∗
isQueue q I _ −−∗

deep-handler ⟨Coop⟩ {y.2Φ(y)}
((lines 12–26) | (lines 28–36))
⟨⊥⟩ {_.True}

The proof of this statement follows by Löb’s induction. The derivation of the deep-handler
judgment is split into the verification of the return and the effect branches. In the
verification of the return branch, one must claim uniqueness of the assertion torchγ ,
through rule (ClaimUniqueness), to show that line 35 is indeed unreachable. In the
verification of the effect branch, one must consider the two cases of either an async
operation or an await operation.

The verification of the case of an async operation consists of three steps. First, the
Lemma 4.3 is applied to allocate a promise (line 15) for the fiber being spawned. Second,
the assumption that the program conforms to the protocol Async is exploited to show
that the suspended fiber k satisfies the queue invariant, and can thus be added to q
(line 16). Finally, Lemma 4.2 is applied to justify the recursive call to fulfill (line 17).
This step is allowed thanks to the application of Löb’s induction in the beginning of the
derivation of this lemma.

The verification of the case of an await operation exploits the invariant promiseInv
to justify the two possible outcomes of reading the promise p (line 29). Opening the
invariant and destructing the leading existential quantification introduces an abstract
map M . To prove that p belongs to M , one must exploit that the effect performed by
an await operation abides by the protocol Await , which asks the assertion isPromise pΦ
(for some predicate Φ) as a precondition to performing this effect.

The derivation of the preceding statement completes the proof of Lemma 4.2. To
finish the proof of run, it suffices to verify the call to fulfill in line 39. This final
step follows from the application of Lemma 4.3, which justifies the allocation of a fresh
promise; and of Lemma 4.2, which justifies the call to fulfill.

4.4 Related work

Implementation of continuation-based concurrency. It is well-known that continu-
ations can be used to implement concurrency abstractions. Wand [Wan80a] illustrates the
implementation of many concurrency primitives, such as fork and semaphores [Han73], in
Indiana Scheme 3.1 [Wan80b]. Indiana Scheme is a dialect of Scheme [sch] with support
for catch, a construct with virtually the same semantics as callcc. In the same vein,
Haynes et al. [HFW84] illustrate the implementation of coroutines [dMI09] in Scheme
84 [FHKW84], a dialect of Scheme with support for callcc.

Verification of continuation-based concurrency. The literature counts with few
formal proofs of correctness of continuation-based concurrency libraries such as the one
presented in this chapter. Much of the related work concerns the proof of compilers.
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Timany and Birkedal [TB19] verify the correctness of two concurrency constructs,
the operations fork and yield, implemented using callcc, throw, and a global queue.
However, their correctness statement is a compilation-correctness result: the translation
of a (closed) program exploiting the primitive operations fork and yield into a program
exploiting the encoding of these primitive operations in terms of callcc, throw, and
a global queue is correct. The translation is correct in the sense that the translated
program is an observational refinement of the source program. This means that, if
the translated program terminates, then the source program also would terminate. To
establish observational refinement, the authors introduce a cross-language logical relation,
an interpretation of types as a relation between programs of different languages.

Nakata and Saar [NS13] also address the verification of continuation-based concurrency
as a compilation-correctness problem. They verify a compiler from a language with
primitive support for concurrency constructs to a language with support for the delimited-
control operations shift and reset.



Chapter 5

Automatic Differentiation

Automatic differentiation (AD) [GW08] is a set of techniques for the efficient and exact
computation of derivatives of functions defined by programs. In a slightly more formal
sentence than the previous one, the problem addressed by AD could be stated as follows:
given a program that defines a mathematical function E, for some sense of the word
defines, how to algorithmically construct a program that defines the derivative of E?

The set of AD algorithms providing an answer to this question can be roughly classified
according to two approaches: the forward-mode approach and the reverse-mode approach.
We explain each of these approaches further in Section 5.3.

Another axis under which AD algorithms can be classified is according to the interface
that they expose: either as a compiler, which translates a program that defines a function E
into a program that defines the derivative of E; or as a library, which is a higher-order
program that takes a program that defines a function E and produces a program that
defines the derivative of E. The terminology define-then-run and define-by-run has been
used to specify this distinction [VS21]. The term define-then-run expresses the idea that,
under this interface, the input program e, which defines the function E, does not need
to be evaluated. A compiler is thus qualified as define-then-run, because the arithmetic
operations used by the source program e to define E can be statically inferred by the
compiler: it suffices to analyse the source code of e. The term define-by-run expresses the
idea that, under this interface, the input program e, which defines the function E, must be
evaluated. A library is thus qualified as define-by-run, because (in a language without the
ability to reflectively inspect source code at runtime) the arithmetic operations performed
by the input program e to define E can be observed only during the execution of this
program.

Our goal in this chapter is to specify and verify a HH implementation of a define-by-
run reverse-mode AD algorithm using effect handlers. The contents of this chapter have
been presented in a submitted (and now under-revision) paper [dVP22b].

5.1 Specification

We introduced the concept of an AD algorithm as an algorithm acting on a program that
defines a function E. However, we did not assign a precise meaning to the word defines.

In the formal study of define-then-run algorithms, this question is often addressed by
means of a denotational semantics [KKP+22, HSV21, SMC21]: defines becomes denotes,
so a program defines the mathematical function E given by its denotational interpretation.

In the formal study of define-by-run algorithms, however, the denotational-semantics
approach is not well-suited. Indeed, to see the shortcomings of this approach, it suffices
to suppose that the host language in which an AD library is written has support for
standard imperative constructs, such as references, if-then-else conditionals, and while
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loops. Then, to find the denotation of an arbitrary input program e of such a library, one
must find a denotational model that is well-defined for all these imperative constructs.
However, we are unaware of a denotational model interpreting programs of a language L
as differentiable mathematical functions in the case where L has support for references.

In this chapter, we wish to formally study diff, a define-by-run AD algorithm
implemented in HH . Therefore, we wish to formally specify this algorithm, and, to do so,
we must address this question of what it means for a program e to define a function E.
Our solution is to introduce a Separation Logic predicate isExp (Definition 5.6), such
that the program e defines a function E if the assertion e isExp E holds.

Clearly, we have just delegated the problem of specifying the meaning of defines to
the definition of isExp. However, to write the specification of diff, it suffices to suppose
that such a predicate exists. Moreover, to understand the specification of diff, it suffices
to understand the informal contract expressed by this predicate. The assertion e isExp E
means that e defines the mathematical expression E (Definition 5.1), which can be seen
as a univariate polynomial. Therefore, this predicate is narrowing two sets: (1) it is
narrowing the set of mathematical functions (which we did not define) to the set of
mathematical expressions, and (2) it is narrowing the set of programs e to those that
define a mathematical expression E. To define a mathematical expression E can be
loosely understood as evaluating the univariate polynomial E. The important remark is
that the predicate isExp leaves unspecified how a program e implements this evaluation.
Such a program e can exploit every construct of the HH language, including references,
if-then-else branching, recursive functions, and effect handlers.

With the introduction of isExp, the specification of the define-by-run AD algorithm
diff is easily expressible: given a program e that defines an expression E, the ap-
plication diff e produces a program e′ that defines E′, the symbolic derivative of E
(Definition 5.5). This statement is formally captured in Hazel by the following specification:

Statement 5.1 (Formal specification of diff) The specification of diff is expressed
as follows:

∀ e, E. e isExp E −−∗ ewp (diff e) ⟨⊥⟩{e′. e′ isExp E′}

This specification of AD is strikingly simple and yet permissive. In particular, it allows
the verification of programs that apply diff in a nested fashion such as diff (diff e).
If e defines an expression E, then it is easy to show that the output of this program
defines E′′, the second-order derivative of E.

5.2 Definitions

The previous section raised numerous questions. For instance, what is a mathematical
expression E? How does a program e define an expression E? And finally, what is the
definition of isExp? In this section, we shall answer these questions.
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5.2.1 Mathematical expressions

In short, a mathematical expression E is a polynomial in one formal variable X. 1

We define the set of mathematical expressions E as an instance of the more general
definition, ExpI , of expressions whose variables are indexed by a given set I.

Definition 5.1 (Expressions) Let I be a finite or infinite indexing set. Let ı range
over I. The set ExpI of expressions whose variables are drawn from I is defined as
follows:

Binop ∋ op ::= Add | Mul
ExpI ∋ E ::= Zero | One | E op E | Leaf ı

An expression E ∈ ExpI is thus a multivariate polynomial with formal variables in the
set {Leaf ı}ı∈I . By choosing the indexing set I to be the singleton set {X}, one obtains
the set of mathematical expressions Exp{X}, composed of univariate polynomials. Even
though not immediately clear, the flexibility in the choice of indexing set is necessary. For
example, it is needed in the statement of the backward invariant (Definition 5.13), one of
the main invariants of the proof of correctness of diff.

It remains to define the symbolic derivative of a mathematical expression E ∈ Exp{X}.
We could define this notion directly, that is, without relying on auxiliary definitions.
However, we choose again to make a detour into more general definitions that we shall
meet again during the verification of diff. More specifically, we define the symbolic
derivative of an expression in Exp{X} as a particular instance of the partial derivative of
an expression in ExpI .

The partial derivative is defined in terms of the evaluation of an expression under an
assignment ϱ of formal variables to values of an arbitrary semiring.

A semiring is a tuple (R, 0,+, 1,×,≡), where R is a set and ≡ is an equivalence
relation on R, for which the following equations are assumed to hold (for every a, b,
and c ∈ R): 2 3

a+ (b+ c) ≡ (a+ b) + c a× (b× c) ≡ (a× b)× c
a+ b ≡ b+ a a× b ≡ b× a
a+ 0 ≡ a a× 1 ≡ a

(a+ b)× c ≡ (a× c) + (b× c) a× 0 ≡ 0

We often write simply R to denote the semiring tuple, when the remaining components
are easily inferred. Elements of R are called numbers.

The evaluation of an expression E ∈ ExpI under an assignment ϱ : I → R is a
term JEKϱ ∈ R, which results from interpreting a node _ op _ in E by the corresponding

1We choose to work with univariate polynomials instead of multivariate polynomials, because this
choice leads to a simpler implementation of AD and to a simpler correctness proof. The ideas presented
in this chapter, however, can be easily adapted to a multivariate setting. We postulate that only the
mechanized proof would require significant changes, even though we have not attempted to perform these
changes.

2We require satisfiability with respect to the axioms of a semiring, rather than a ring, because the
inverse of addition and its properties are not necessary to complete correctness proof.

3The set of axioms of a semiring may vary among different authors. Here, we follow the set of axioms
defined by the record semi_ring_theory, which can be found in theory setoid_ring.Ring_theory of
Coq’s Standard Library: https://coq.inria.fr/library/Coq.setoid_ring.Ring_theory.html

https://coq.inria.fr/library/Coq.setoid_ring.Ring_theory.html
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arithmetic operation in R, and from interpreting a leaf Leaf ı by the the number ϱ(ı).
Here is the formal definition of JEKϱ:

Definition 5.2 (Expression evaluation) Let R be a semiring, and let I be an indexing
set. The function J_K(_) : ExpI → (I → R)→ R is inductively defined as follows:

JZeroKϱ = 0
JOneKϱ = 1

JE1 Add E2Kϱ = JE1Kϱ + JE2Kϱ
JE1 Mul E2Kϱ = JE1Kϱ × JE2Kϱ

JLeaf ıKϱ = ϱ(ı)

The partial derivative of an expression E ∈ ExpI with respect to a variable ȷ under
an assignment ϱ : I → R is a value in R noted ∂E/∂ȷ (ϱ). This value corresponds to the
derivative with respect to r and at ϱ(ȷ) of the function λ r. JEKϱ[ȷ := r], which evaluates E
under the assignment ϱ[ȷ := r] (that overwrites the value of ϱ at ȷ with r). However,
instead of defining a primitive notion of the derivative of a function of type R → R,
we exploit that the function we wish to differentiate is given as the evaluation of an
expression E. Therefore, we can introduce an inductive definition of ∂E/∂ȷ (ϱ) as the
result of the traversal that applies the differentiation laws of addition and multiplication
to the corresponding nodes of E:

Definition 5.3 (Partial derivative) Let R be a semiring, and let I be an indexing set.
The function ∂_/∂_ (_) : ExpI → I → (I → R)→ R is inductively defined as follows:

∂Zero/∂ȷ (ϱ) = 0
∂One/∂ȷ (ϱ) = 0

∂(E1 Add E2)/∂ȷ (ϱ) = ∂E1/∂ȷ (ϱ) + ∂E2/∂ȷ (ϱ)
∂(E1 Mul E2)/∂ȷ (ϱ) = ∂E1/∂ȷ (ϱ)× JE2Kϱ + JE1Kϱ × ∂E2/∂ȷ (ϱ)

∂(Leaf ı)/∂ȷ (ϱ) = 1 if ı = ȷ
∂(Leaf ı)/∂ȷ (ϱ) = 0 otherwise

The derivative of a univariate expression E ∈ Exp{X} can thus be defined as the
partial derivative of E with respect to its single variable X. The assignment under which
we consider this derivative is the function λ ı. Leaf ı, noted Leaf for short. The codomain
of this function is the free semiring Exp{X}: the semiring generated by taking Exp{X} as
the carrier set, the function _ Add _ as the addition operation, the function _ Mul _ as
the multiplication operation, and the constants Zero and One as the respective neutral
elements. The equivalence relation _ ≡Exp{X} _ of this semiring is defined inductively
as the smallest relation that validates the semiring axioms for this choice of arithmetic
operations. The following two definitions sum up this discussion.

Definition 5.4 (Free semiring) The tuple (Exp{X},Zero,Add ,One,Mul ,≡Exp{X}) is
a semiring, where the equivalence relation _ ≡Exp{X} _ is defined as the smallest relation
for which the semiring axioms hold.

Definition 5.5 (Symbolic derivative) Let E ∈ Exp{X} be a univariate expression.
The symbolic derivative of E, written E′, is the partial derivative of E with respect to X
under the free-semiring assignment Leaf .

E′ ≜ ∂E/∂X (Leaf )
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One can check that this definition gives rise to the usual laws of symbolic derivation.
In the case of multiplication, for instance, by combining the fourth equation from Def-
inition 5.3 with the identity laws JE1KLeaf = E1 and JE2KLeaf = E2, one immediately
obtains the familiar symbolic derivation law:

(E1 Mul E2)
′ = (E′

1 Mul E2) Add (E1 Mul E′
2).

5.2.2 Programmatic expressions

How to programmatically define a mathematical expression E? The immediate answer is
to define E as data, using binary sums to distinguish among the different constructors
of Exp{X}. However, with such a representation of expressions, an AD algorithm would
be constrained to offer a define-then-run interface: to differentiate an expression E, the
programmer would have to first write its representation in a domain-specific language,
thus revealing beforehand the arithmetic operations used in the construction of E.

To offer a define-by-run interface, a mathematical expression E should be represented
as a computation, rather than as data. A well-known method for representing terms of an
inductive definition as computations is the Church-Böhm-Berarducci encoding [Kis12b],
also known as the tagless final [CKS09, Kis10] representation. According to this method,
the expression E is represented by a programmatic expression e: a higher-order function
with five arguments, zeroR, oneR, addR, mulR, and xR, each argument corresponding
to one of the five constructors of the Exp{X}, the constructors Zero, One, Add , Mul ,
and Leaf X.

One can see the four first arguments of a programmatic expression e (zeroR, oneR,
addR, mulR) as a set of arithmetic operations over an abstract semiring R; the last
argument xR as a number r of this semiring; and the expression e as computing the
evaluation of E under the assignment of X to r, that is, the number JEK(λX. r). Under
this perspective, it is easy to see why the behavior of e is constrained by the expression E
that it defines. For example, if e defines the expression Leaf X, then e could be
implemented as returning the value xR, or the result of multiplication mulR xR oneR.
However, if e was implemented by the addition addR xR xR, then it would define the
expression (Leaf X) Add (Leaf X), rather than Leaf X. Here is another example of a
programmatic expression:

(* [simple] defines the expression [X(X+1)]. *)
let simple = fun zeroR oneR addR mulR xR ->

mulR xR (addR xR oneR)

The implementation of a programmatic expression e, however, is not confined to the
arithmetic operations that it introduces as arguments. As a computation e has access to
the entire set of HH features, including references, if-then-else conditionals, recursive
functions, and effect handlers. An interesting example of a programmatic expression that
exploits some of these features is the following program:

(* [monomial k] defines the expression [X^k]. *)
let monomial k = fun _ oneR _ mulR xR ->

let res , x, k = ref oneR , ref xR , ref k in
let rec loop() =

if !k > 0 then
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res := mulR !res (if !k % 2 = 0 then oneR else !x);
x := mulR !x !x;
k := !k / 2

in
loop ();
!res

This program computes the evaluation of the monomial expression of degree k. It
implements the technique of fast exponentiation by means of references, a recursive
function, and a conditional.

Another interesting aspect of this representation is that, because a programmatic
expression is parameterized over the set of arithmetic operations, one can evaluate a
programmatic expression e with concrete arithmetic operations of an arbitrary semiring R.
For instance, one can evaluate the programs simple and monomial with integer arithmetic
as follows:

(* A set of integer arithmetic operations. *)
let zeroI , oneI , addI , mulI , twoI =

0, 1, (fun a b -> a + b), (fun a b -> a * b), 2

(* This program evaluates to [6]. *)
let _ = simple zeroI oneI addI mulI twoI

(* This program evaluates to [1024]. *)
let _ = (monomial 10) zeroI oneI addI mulI twoI

5.2.3 Relating programmatic expressions to mathematical expressions

The only ingredient in the specification of diff that remains to be introduced is the
predicate isExp, which relates a programmatic expression e to a mathematical expression E.
Let us not delay any further, here is the definition of isExp:

Definition 5.6 (isExp) The predicate _ isExp _ : Val → Exp{X} → iProp is defined
as follows:

e isExp E ≜
2∀R, Ψ, isNum. ∀ zero, one, add , mul .

isNumDict (zero, one, add ,mul ,R,Ψ, isNum) −−∗
∀x, r. x isNum r −−∗

ewp (e zero one add mul x) ⟨Ψ⟩{y. ∃s.
y isNum s ∗ s ≡R JEK(λX. r)}

This definition states that e defines E, if e is able to compute the evaluation of E in
any given ring R and under any assignment of X to a number r.

The leading persistently modality means that, once e has been shown to define E, e
can be used indefinitely many times as a representation of this expression.

Following this modality, there comes a series of universally quantified variables.
The semiring R denotes the semiring in which the evaluation of E must be computed.
The values zero, one, add , and mul denote the arithmetic operations to which e is
going to be applied; they model the operations of the semiring R in a sense that the
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isNumDict (zero, one, add ,mul ,R,Ψ, isNum) ≜
⊢ zero isNum 0 ∧
⊢ one isNum 1 ∧
⊢ ∀ a, b, r, s. a isNum r −−∗ b isNum s −−∗ ewp (add a b ) ⟨Ψ⟩{u. u isNum (r + s)} ∧
⊢ ∀ a, b, r, s. a isNum r −−∗ b isNum s −−∗ ewp (mul a b ) ⟨Ψ⟩{u. u isNum (r × s)} ∧
⊢ ∀ a, r. a isNum r −−∗ 2 (a isNum r)

Figure 5.1: Specification of a dictionary of arithmetic operations

assertion isNumDict , which we shall soon discuss, holds of these values. The values add
and mul are values of HH , therefore they can perform effects. The protocol Ψ describes
these effects. Finally, the term isNum is a representation predicate, it relates a value x to
a number r, thus formalizing claims of the kind “a value x represents a number r”.

The predicate isNum is exploited to provide a specification of the arithmetic op-
erations zero, one, add , and mul , thereby formalizing the claim that these operations
model the operations of the semiring R. Indeed, the next line of the definition of isExp
claims that the assertion isNumDict holds. This assertion, whose definition appears
in Figure 5.1, is the conjunction of the following claims: (1) the value zero represents 0;
(2) the value one represents 1; (3) for all numbers r and s, add computes a representation
of r + s when applied to representations of r and s; (4) for all numbers r and s, mul
computes a representation of r × s when applied to representations of r and s; (5) a
representation of a number is persistent.

The concluding three lines of the definition of isExp state that, for every value x
and number r such that x represents r, the application of e to the set of arithmetic
operations, zero, one, add , mul , and to x produces a value y such that y represents the
evaluation of E under the assignment of X to r.

In fact, the result value y is claimed to represent a number s such that s is equivalent
to JEK(λX. r). This slightly more convoluted statement exempts one from requiring that
the predicate isNum be compatible with the semiring equivalence relation ≡R:

“isNum is compatible with ≡R” ≜ ∀x, r, s. x isNum r −−∗ r ≡R s −−∗ x isNum s

This requirement seems natural, but it is not satisfied by the particular instance
of isNum used in the verification of diff (the predicate isNode, Definition 5.9).

Let us conclude this subsection with a couple of remarks.
First, to compute the evaluation of E in the semiringR, the programmatic expression e

has access to the value x, representing the element r; the value zero, representing the
neutral element 0; the value one, representing the neutral element 1; the function add ,
which evaluates an addition node; and the function mul , which evaluates a multiplication
node. Because R is abstract, e uses only these values to introduce representations of
numbers. By no other means, can e produce values representing numbers. This limitation
illustrates how the Church-Böhm-Berarducci encoding implements the constraint that
inhabitants of an algebraic data type can only be built using the basic constructors of
this type.
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1 let fm_diff e = fun zeroR oneR addR mulR xR ->
2 let zeroS = (zeroR , zeroR) in
3 let oneS = (oneR , zeroR) in
4 let addS (av, ad) (bv, bd) =
5 (addR av bv, addR ad bd) in
6 let mulS (av, ad) (bv, bd) =
7 (mulR av bv, addR (mulR ad bv) (mulR av bd)) in
8 let xS = (xR , oneR) in
9 let _, yd = e zeroS oneS addS mulS xS in

10 yd

Figure 5.2: Forward-mode AD library in HH .

Second, because the protocol Ψ, which describes the effects of add and mul , is abstract,
e is not allowed to install a handler over applications of these functions. Moreover, because
this protocol is also used to specify the effects of e, this means that e does not introduce
effects. In conclusion, e is effect-polymorphic: the only observable effects that e may
perform are those introduced by calls to add or mul. The correctness of diff relies on
this fact.

5.3 Implementation

Before presenting the program diff, which uses effect handlers to implement reverse-mode
AD, we present the program fm_diff, which implements forward-mode AD, and which is
easier to understand than diff.

The forward-mode algorithm fm_diff satisfies the same specification as diff. This
shows that Specification 5.1 is agnostic as to whether the algorithm implements a reverse-
mode or a forward-mode approach. Moreover, both forward-mode and reverse-mode AD
share the idea of monitoring the execution of the input programmatic expression e under
a modified set of arithmetic operations. Therefore, understanding the forward-mode
algorithm fm_diff constitutes a good preparation for the explanation of diff.

5.3.1 Forward-mode AD

The implementation of fm_diff appears in Figure 5.2. As previously claimed, the
program fm_diff satisfies the same specification as diff:

Statement 5.2 The forward-mode AD algorithm fm_diff satisfies Specification 5.1.

This statement means that fm_diff takes a programmatic expression e defining a
mathematical expression E, and produces a programmatic expression e′ defining the
derivative of E; that is, fm_diff must produce a programmatic expression e′ that,
when applied to a set of arithmetic operations over an abstract semiring R and a value
representation of a number r, is able to compute the number JE′K(λX. r).

The key idea of the forward-mode approach is that knowing the evaluation of E in a
well-chosen semiring S is sufficient to know the evaluation of E′ in R. In other words,
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given a semiring R and a number r ∈ R, there exists a semiring S and a number s ∈ S,
such that, if one knows JEKS(λX. s), then one knows JE′KR(λX. r).

4

Such a semiring S indeed exists, it is the semiring of dual numbers. A dual number
is a pair of numbers in R. Hence, the carrier set of S is R×R. The first component
of a dual number is called the value component and the second component is called the
tangent component.

Addition and multiplication on dual numbers are defined as follows:

(a, ȧ) +S (b, ḃ) ≜ (a+R b, ȧ+R ḃ)

(a, ȧ)×S (b, ḃ) ≜ (a×R b, ȧ×R b+R a×R ḃ)

Now, let s be the dual number (r, 1). It follows, from a simple proof by induction
on E, that the evaluation of E in S at s satisfies the following equation:

JEKS(λX. s) = (JEKR(λX. r), JE
′KR(λX. r))

Therefore, to evaluate E′ in R, it suffices to evaluate E in S!
The implementation of fm_diff is a faithful translation of this idea. In line 1, it

introduces the set of arithmetic operations on R. In lines 2 to 6, it defines the arithmetic
operations on dual numbers. In line 8, it defines the dual number s. Finally, in line 9, the
programmatic expression e is evaluated under dual-number arithmetic, thus producing a
dual number whose tangent component is the desired result of fm_diff.

5.3.2 Reverse-mode AD

Reverse-mode AD follows the same basic idea as forward-mode AD: given a programmatic
expression e that defines E, a set of arithmetic operations over an abstract semiring R,
and a value representation of a number r, it computes the evaluation of E′ in R at r by
computing the evaluation of E in a custom semiring S. In reverse-mode AD, this custom
semiring S is the free semiring Exp{X} (Definition 5.4).

The evaluation of E under the free-semiring arithmetic does not yield a value from
which the derivative E can be directly extracted. The purpose of this evaluation is to
record the list of arithmetic operations performed by e during its execution. This list is
known in the literature as the Wengert list [GW08]. To compute the evaluation of E′

in R, the algorithm then processes the entries of this list in the reverse order as they were
added. The execution of a reverse-mode AD algorithm is thus divided into two phases:
the forward phase, consisting of the execution of e; and the backward phase, consisting
of the evaluation of E′. The names backward and reverse reflect the order in which the
entries of the Wengert list are treated.

The definition of diff, a define-by-run AD algorithm implemented in HH , appears
in Figure 5.3. For the sake of readability, this definition employs the following abbrevia-

4The superscripts decorating the evaluation maps J_K_ specify the semiring in which the evaluation
is computed.
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1 let diff e = fun zeroR oneR addR mulR xR ->
2 let zeroS = Zero in
3 let oneS = One in
4 let addS = fun a b -> do (Add (a, b)) in
5 let mulS = fun a b -> do (Mul (a, b)) in
6
7 let mk n = Var (n, ref zeroR) in
8 let get_v u =
9 match u with

10 ( fun (* Const. *) c ->
11 match c with ( fun _ -> zeroR | fun _ -> oneR )
12 | fun (* Var. *) (m, _) -> m
13 )
14 in
15 let get_d u =
16 match u with
17 ( fun (* Const. *) _ -> () () (* Unreachable. *)
18 | fun (* Var. *) (_, q) -> !q
19 )
20 in
21 let update u i =
22 match u with
23 ( fun (* Const. *) _ -> ()
24 | fun (* Var. *) (_, q) -> q := addR !q i
25 )
26 in
27
28 let xS = mk xR in
29 let () =
30 deep-try (e zeroS oneS addS mulS xS) with
31 (* Effect branch. *)
32 ( fun request k ->
33 match request with
34 ( fun (* Add. *) (a, b) ->
35 let u = mk (addR (get_v a) (get_v b)) in
36 k u;
37 update a (get_d u);
38 update b (get_d u)
39 | fun (* Mul. *) (a, b) ->
40 let u = mk (mulR (get_v a) (get_v b)) in
41 k u;
42 update a (mulR (get_d u) (get_v b));
43 update b (mulR (get_d u) (get_v a))
44 )
45 (* Return branch. *)
46 | fun y ->
47 update y oneR
48 )
49 in
50 get_d x

Figure 5.3: Reverse-mode AD library in HH .
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tions:
Zero ≜ inj1 (inj1 ())
One ≜ inj1 (inj2 ())

Var (m,𝓆) ≜ inj2 (m,𝓆)

Add (a, b) ≜ inj1 (a, b)

Mul (a, b) ≜ inj2 (a, b)

In line 1, the function diff gains access to the following values: a programmatic expres-
sion e that defines a mathematical expression E; a set of arithmetic operations zeroR, oneR,
addR, and mulR implementing the operations of an abstract ring R; and a value xR
representing a number r ∈ R.

As previously mentioned, reverse-mode AD exploits the programmatic expression e to
compute the evaluation of E in the free semiring Exp{X}. Therefore, the function diff
must introduce a value representation of mathematical expressions. The approach im-
plemented by diff is to represent mathematical expressions as nodes in an implicit
computational graph. A computational graph is a directed acyclic graph (DAG) with
three types of nodes: (1) constant nodes, which identify the expressions Zero and One;
(2) composite nodes, which identify the operations Add and Mul ; and (3) a variable
node, which identifies the expression Leaf X. Constant nodes and the variable node
have no outgoing edges. A composite node has exactly two outgoing edges indicating the
operands of the operation that it identifies. Every node u is associated to a mathematical
expression Eu: if u is either a constant node or a variable node, then u is associated
to the expression it identifies; if u is a composite node that identifies the operation op
and is connected to the nodes a and b, then u is associated to the expression Ea op Eb.
Therefore, to represent a mathematical expression as a value, it suffices to introduce a
value representation of the nodes of this graph.

The constant node identifying Zero is represented by the value Zero. The constant
node identifying One is represented by the value One. The variable node and composite
nodes are represented by intermediate variables, which are values of the form Var (m,𝓆).
The first component m of an intermediate variable u = Var (m,𝓆) is called the value field
of u. It represents the evaluation of Eu (the expression identified by u) at r. The second
component 𝓆 is a memory location. The value stored in 𝓆 is called the derivative field of u.
During the forward phase, this memory location ensures that the value representation of
nodes is injective: two different nodes in the graph have distinct value representations.
This restriction is met by the function mk (line 7), which creates new nodes by allocating
fresh memory locations.

The function get_v (line 8) computes the evaluation of the expression Eu identified
by a node u. In the case of the constant nodes Zero and One, it simply returns the
representation of the R-numbers 0 and 1, respectively. In the case of an intermediate
variable u, it suffices to read u’s value field. The function get_d (line 15) reads u’s
derivative field. It is never applied to Zero or One.

The arithmetic operations acting on nodes of the computational graph, and, con-
sequently, also acting on representations of mathematical expressions, are introduced
in lines 2 to 5. The values zeroS (line 2) and oneS (line 3) are respectively defined
as Zero and One. The functions addS (line 4) and mulS (line 5) are both defined by
a single instruction: the action of performing an effect. In the case of addS , the effect
is Add, whereas, in the case of mulS, the effect is Mul. The purpose of the functions addS
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and mulS is simply to send a signal to the effect handler of line 30 when e requests
an arithmetic operation. The meaning of these operations is given by this handler. A
call to addS , for example, with two intermediate variables a and b, triggers the creation
of a new composite node represented by the intermediate variable created in line 35.
A call to mulS behaves analogously. The only difference is the operation which the
node identifies. The new composite node created in line 35, for example, identifies an
addition operation Add , whereas the new composite node created in line 40, identifies a
multiplication operation Mul .

In line 28, the first intermediate variable xS is introduced. This variable represents
the variable node, which identifies X. Accordingly, the value field of xS is xR, a value
that represents the evaluation of X at r.

In line 30, the execution of e begins. This execution is monitored by the effect handler,
whose definition spans lines 30 to 48. Every time e performs an operation addS or mulS,
control is handed over to the handler. In addition to creating a new composite node
represented by a fresh intermediate variable u, issued by a call to mk (in either line 35
or 40), the handler schedules calls to the function update (lines 37 to 38, and lines 42
to 43). The function update is responsible for performing an incremental update to the
second component of intermediate variables. We postpone the correctness argument of
diff to the next section, but, for now, let us claim that, at the end of the backward
phase, these incremental updates result in the evaluation of E′. Therefore, the creation
of a new node u induces a set of update instructions that contribute to the computation
of diff’s desired result. When the update instructions induced by a node u are executed,
we say that u has been treated.

The handler schedules update instructions by placing them syntactically after the
continuation resumption (lines 36 and 41). The crucial observation is that, because the
handler is deep, the continuation k contains a copy of this handler as its topmost frame.
Therefore, the update instructions induced by further calls to either addR or mulR during
the execution of k are executed before those placed syntactically after the continuation
resumption. Nodes are thus treated in the reverse order as they are introduced. So, even
though the distinction between forward and backward phases is not clear in diff’s code,
this distinction exists in diff’s operational behavior: the forward phase happens during
the execution of e, where calls to addR and mulR create new nodes in the computational
graph; whereas the backward phase happens after the execution of e, when the update
instructions are called and nodes are treated in the reverse order as they were introduced.
Between the forward and backward phases, there happens the execution of the single
update instruction of line 47. Indeed, this instruction is executed (only once) upon e’s
termination. The execution of this instruction does not correspond to the treatment of a
node in the graph. Its purpose is to plant the value oneR as a “seed” in the derivative
field of y, the intermediate variable resulting from the execution of e. This variable is the
first one to have a derivative field storing a value different from zeroR. The incremental
updates during the backward phase “magnify” this seed in such a way that, at the end of
the backward phase, the increments accumulated in the derivative field of xS correspond
to a value representation of JE′K(λX. r), the desired result of diff. Therefore, diff
terminates in line 50 by looking up to xS ’s derivative field.
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5.4 Verification

Proof context. This section presents the formal proof of Statement 5.1: given a
programmatic expression e that defines a mathematical expression E – that is, assuming
the assertion e isExp E holds – we prove that the program diff e produces an expression e′

that defines E′ – that is, we show that the assertion e′ isExp E′ holds.
It comes as no surprise that, during the proof, the two occurrences of isExp, the one

that appears as a premise and the one that appears as a goal, are unfolded. To avoid
confusion between the two sets of universally quantified variables from each occurrence
of isExp, the semiring quantified in e isExp E is noted S, whereas the semiring quantified
in e′ isExp E′ is noted R. The semiring S is used as a subscript in the variables
of e isExp E, and R is used as a subscript in the variables of e′ isExp E′. In sum, the
assertion e isExp E is unfolded as:

e isExp E =

2∀S, ΨS , isNumS . ∀ zeroS , oneS , addS , mulS .
isNumDict (zeroS , oneS , addS ,mulS ,S,ΨS , isNumS) −−∗
∀xS , s ∈ S. xS isNumS s −−∗
ewp (e zeroS oneS addS mulS xS) ⟨ΨS⟩{y. ∃T.
y isNumS T ∗ T ≡S JEK(λX. s)}

And, the assertion e′ isExp E′ is unfolded as:

e′ isExp E′ =

2∀R, ΨR, isNumR. ∀ zeroR, oneR, addR, mulR.
isNumDict (zeroR, oneR, addR,mulR,R,ΨR, isNumR) −−∗
∀xR, r ∈ R. xR isNumR r −−∗
ewp (e′ zeroR oneR addR mulR xR) ⟨ΨR⟩{y. ∃s.
y isNumR s ∗ s ≡R JE′K(λX. r)}

Because the assertion e′ isExp E′ is the goal, the universally quantified terms of this
definition must be introduced. More specifically, the proof context can be divided into
the following pair of hypothesis and goal:

Hypothesis 5.1 The variables R, ΨR, isNumR, zeroR, oneR, addR, mulR, xR, and r
are introduced, and the assertions isNumDict (zeroR, oneR, addR,mulR,R,ΨR, isNumR)
and xR isNumR r are assumed to hold.

Goal 5.1 The goal is to prove that e′ (the result of diff e) computes the evaluation of E′

in the semiring R at r, when supplied with implementations of the arithmetic operations
of R and with a value representation of r; that is, the goal is the following ewp assertion:

ewp (e′ zeroR oneR addRmulR xR) ⟨ΨR⟩{y. ∃s. y isNumR s ∗ s ≡R JE′K(λX. r)}

Computational graph. In the previous section, we used an implicit computational
graph to explain the dynamic behavior of diff. The main idea of the formal proof is to
make this graph explicit ; that is, to introduce a formal representation of a computational
graph, thereby bringing this notion within reach of the program logic. Because this graph
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(IntroduceContext) ˙|⇛∃γ. isContextγ []

(IntroduceBinding) isContextγ K −−∗ ˙|⇛

{
isContextγ (K ++B) ∗
isBindingγ B

(ClaimDefinedness) isContextγ K −−∗ isBindingγ B −−∗ B ∈ K

(ShareBinding) isBindingγ B −−∗ 2 isBindingγ B

Figure 5.4: Logical rules governing the assertions isBinding and isContext .

evolves during the forward phase, as new nodes are added to the graph, a piece of ghost
state is needed to keep track of this graph. During the backward phase, the graph is not
modified, so only its formal representation is needed.

The formal representation of computational graphs relies on the notion of a binding.
A binding B specifies a composite node u and the pair of nodes connected to u. Indeed, a
binding is a quadruple of the form let u = a op b, where u specifies a composite node, op
is the operation identified by u, and a and b are the nodes connected to u. A graph is
thus represented as a list of bindings K, also called a context. In conclusion, here is the
formal definition of the syntax of bindings and contexts:

Definition 5.7 (Bindings; contexts) Let u, a, b range over Val. The syntax of bindings
and contexts is defined as follows:

LetBinding ∋ B ::= let u = a op b
Context ∋ K ::= [] | B :: K

This representation ignores the constant nodes and the variable node. There is no
need to include these nodes as part of a context K, because they can be easily identified.
Constant nodes are represented by the fixed set of values zeroS = Zero (line 2) and
oneS = One (line 3). The variable node is represented by the intermediate variable xS ,
allocated in line 28, point of the execution at which the following assertion holds:

xS = Var (xR,𝓆) ∗ 𝓆 7→ zeroR

This assertion follows a pattern that shall become common in the remainder of
this proof. Therefore, we introduce the predicate isVar , which relates an intermediate
variable u to the pair of the numbers in R represented by its value and derivative fields.
The definition hides behind an existential quantifier the concrete value representation of
numbers in R and the memory location 𝓆 storing the derivative field of a variable:

Definition 5.8 The predicate _isVar_ : Val→ R×R → iProp is defined as follows:

u isVar (s, ṡ) ≜ ∃m, 𝓆, d. u = Var (m,𝓆) ∗ m isNumR s ∗ 𝓆 7→ d ∗ d isNumR ṡ

Exploiting the assumption that xR represents the number r and that zeroR represents 0,
it is easy to show that the intermediate variable xS satisfies the following specification:

xS isVar (r, 0) (5.1)
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Now that the computational graph admits a formal representation as a set of fixed
values zeroS , oneS , and xS , and a series of composite nodes K, the next step is to define
a binary predicate u isNode Eu , which formalizes the relation “a node u is associated to
an expression Eu” informally introduced in the previous section. This is desirable, because
diff relies on the execution of e under free-semiring arithmetic. Therefore, to reason
about this execution, one must exploit e’s specification (the assertion e isExp E) with
suitable instances of its universally quantified variables. In particular, one must instantiate
the semiring S with the free semiring Exp{X}, and one must instantiate isNumS with a
representation predicate relating values to elements of the free semiring. However, if the
relation isNode is to be used as the representation predicate isNumS , then isNode must
be persistent, a requirement that comes from isNumDict (Figure 5.1). This restriction
means, in particular, that, if one shows that a node u is associated to an expression Eu

at some point in time during the execution of e, then this association must persist until
the end of e’s execution.

This persistence restriction is not trivially satisfiable, because the computational
graph evolves during e’s execution. So, one must argue that, despite the changes in
the graph, the expression associated to a node remains the same. To formalize such
argument, and, consequently, define the relation isNode, we introduce a ghost variable γ
to store the set of composite nodes of the graph. In fact, this variable γ stores an element
of a well-chosen camera, such that the two new assertions can be introduced: (1) the
assertion isContextγ K, which states that the context K corresponds to the current set of
composite nodes in the graph; and (2) the assertion isBindingγ B, which states that the
binding B belongs to the context representing the current state of the graph. Moreover,
the camera is chosen to reflect the monotonic evolution of the computational graph
during the forward phase: nodes are only added to the graph; a node is never removed.
This ensures that the assertion isBinding is persistent, and, as we shall see, that the
relation isNode is persistent as well.

For completeness, we quickly present the particular instance of the chosen camera
and the definition of the assertions isContext and isBinding , but this information is not
needed for understanding the remainder of the proof. Here is the chosen camera:

Auth(Val fin−⇀ Ag (Val×Op × Val ))

The assertion isContextγ K claims ownership of toMapK, a finite map built from the
context K, whereas the assertion isBindingγ (let u = a op b) claims ownership of the
fragment {u 7→ ag(a, op, b)}:

isContextγ K ≜ • toMapK
γ

isBindingγ (let u = a op b) ≜ ◦ {u 7→ ag(a, op, b)} γ

toMap [] ≜ ∅
toMap (K ++ let u = a op b) ≜ (toMapK)[u 7→ ag(a, op, b)]

The logical rules induced by this choice of camera appear in Figure 5.4. Rule
(IntroduceContext) justifies the introduction of the ghost variable γ. We apply this rule
only once, immediately before the execution of e, therefore γ is unique in the scope of
this proof, and it is defined since line 30. Rule (IntroduceBinding) expresses the idea
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that it is sound to add new composite nodes to the graph. Adding such a node yields a
receipt isBindingγ B stating that B is part of the context representation of the graph.
Rule (ClaimDefinedness) justifies the meaning of isBindingγ B as claiming that B belongs
to the current context K. Indeed, if both the assertions isContextγ K and isBindingγ B
hold, then B ∈ K. Rule (ShareBinding) states that isBinding is persistent.

With this piece of ghost state, we can finally introduce a persistent predicate isNode
relating nodes to the their associated mathematical expression in the graph:

Definition 5.9 (isNode) The predicate isNode : Val→ Exp{X} → iProp is inductively
defined as follows:

u isNode Zero ≜ u = zeroS
u isNode One ≜ u = oneS

u isNode (Leaf X) ≜ u = xS

u isNode (Ea op Eb) ≜ ∃ a, b.
{

isBindingγ (let u = a op b) ∗
a isNode Ea ∗ b isNode Eb

The case of constant nodes and of a variable node is straightforward: the nodes zeroS ,
oneS , and xS are respectively associated to the expressions Zero, One, and Leaf X.
The interesting case is that of a composite node u. Such a node is associated to
the expression Ea op Eb, if there exist nodes a and b respectively associated to Ea

and Eb, and if the binding let u = a op b is part of the context, a claim captured by the
assertion isBindingγ (let u = a op b).

Proof invariants. Having brought the notion of a computational graph to the forefront
of the proof, by both introducing its formal representation as a context and introducing
a ghost cell to keep track of its state, permitted the definition of the representation
predicate isNode. As we shall see in this segment, this approach carries much further:
the piece of ghost state and the notion of contexts are key in the definition of the two
main proof invariants: (1) the forward invariant and (2) the backward invariant. The
forward invariant specifies the meaning of the value component of intermediate variables
during the forward phase, whereas the backward invariant specifies the meaning of the
derivative component of intermediate variables during the backward phase. Let us discuss
each of these invariants in further detail.

To assign a precise meaning to the value component of an intermediate variable u
in a context K, the forward invariant exploits the definition of the filling of K with u,
noted K[u]. The filling of K with u is the mathematical expression resulting from the
suggestive interpretation of a binding B as a let-binding, and of a context K as a series
of let-bindings. Here is the formalization of this definition:

Definition 5.10 (Filling) The function _[_] : Context → Val→ ExpVal is inductively
defined as follows:

[][y] = Leaf y
(K ++ let u = a op b)[y] = (K[a]) op (K[b]) if u = y
(K ++ let u = a op b)[y] = K[y] otherwise
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Another way of seeing the filling of a context K with u is to think of a traversal on the
computational graph denoted by K. The traversal starts in the node u and goes until the
leaves, interpreting composite nodes found during the way as the operations they identify.
This definition is similar to Eu , “the mathematical expression associated to u”, a notion
that we evoked in the previous section, and which is formalized by the representation
predicate isNode. The definition of context filling then might seem superfluous, given that
the predicate isNode is already available. This is not the case, the definition of context
filling differs from this predicate in two key aspects: (1) context filling is a function
in the meta logic, whereas isNode is a relation in iProp; and (2) the expression K[u]
has variables indexed by nodes, thereby permitting and inviting one to think about the
meaning of the partial derivative of this expression with respect to a node. This second
point is key to assign meaning to the derivative field of variables during the backward
phase.

Here is the definition of the forward invariant:

Definition 5.11 (Forward invariant) Let R be the semiring introduced in Hypothe-
sis 5.1, and r be the R number analogously introduced. Let zeroS , oneS , and xS be the
values respectively introduced in lines 2, 3 and 28 of diff (Figure 5.3). Let γ be the
ghost variable introduced by the application of rule (IntroduceContext) (Figure 5.4). The
forward invariant is an assertion parameterized by a context K, noted ForwardInv K,
and defined as follows:

ForwardInv K ≜

isContextγ K ∗

 ∀u ∈ {xS} ∪ defs(K).

leaves(K[u]) ⊆ {xS , zeroS , oneS} ∗
u isVar (JK[u]Kϱ, 0)


where ϱ : Val→ R ≜ (λ_. r)[zeroS := 0][oneS := 1]

This definition relies on three simple definitions: (1) defs(K), which computes the set
of variables defined in a context K, that is, the set of variables u such that there exists
a, b, and op with let u = a op b ∈ K; (2) leaves(E), which computes the set of leaves of E;
and (3) f [x := y]; which overwrites the value of the function f at x with y.

The forward invariant ForwardInv K makes two assertions about the context K. First,
it asserts that K corresponds to the current set of composite nodes in the graph – the
assertion isContextγ K holds. Second, it asserts that K is well-formed : filling K with
either xS or a variable u defined in K yields an expression whose leaves are either xS ,
zeroS , or oneS . Moreover, the value component of such a variable u is the evaluation
of K[u] under the assignment ϱ, which assigns the leaves zeroS , oneS , and xS to the
numbers 0, 1, and r, respectively.

To state the backward invariant, there remains one last notion: the extension of an
assignment ϱ : Val→ R with a context K, noted ϱ{K}. Here is its definition:

Definition 5.12 (Assignment extension) The function _{_} : (Val→ R)→ Context →
(Val→ R) is defined as follows:

ϱ{K} = λ u. JK[u]Kϱ
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The assignment extension ϱ{K} assigns the variable u to the evaluation of K[u] under ϱ.
It is said to extend ϱ, because, if u is not defined in K, then ϱ{K} assigns u to ϱ(u).

Now, all the machinery is in place to define the backward invariant:

Definition 5.13 (Backward invariant) Let R be the semiring introduced in Hypoth-
esis 5.1, and r be the R number analogously introduced. Let zeroS , oneS , and xS be
the values respectively introduced in lines 2, 3 and 28 of diff (Figure 5.3). The back-
ward invariant, noted BackwardInv K1 K2 y, is an assertion parameterized by a pair of
contexts K1 and K2 and by an intermediate variable y. It is defined as follows:

BackwardInv K1 K2 y ≜
let K = K1 ++K2 in

JE′K(λX. r) ≡R ∂(K[y])/∂xS (ϱ) ∗
∀ u ∈ {xS} ∪ defs(K1).

u isVar (_, ∂(K2[y])/∂u (ϱ{K1}))

where ϱ : Val→ R ≜ (λ_. r)[zeroS := 0][oneS := 1]

After the forward phase, the construction of the graph is complete, so its representation
can be identified by a context K. During the backward phase, the nodes of K are treated
in the reverse order in which they were introduced – that is, from right to left. The
context K2, by which the backward invariant is parameterized, specifies the set of treated
nodes, whereas K1 specifies the pending nodes (that is, the nodes that remain to be
treated).

The variable y is the result of the execution of e in line 30. This variable represents
the “root” node associated to the expression E. Indeed, it can be shown that filling K
with y yields an expression equivalent to E modulo exchange of the leaves zeroS , oneS ,
and xS with the expressions Zero, One, and Leaf X. However, the key idea of the
backward invariant is to consider the filling of the partial context K2 with y. The yielded
expression, K2[y], has leaves indexed by variables defined in K1, and leads to a crucial
remark: the derivative field of a variable u, either defined in K1 or equal to xS , is the
partial derivative of K2[y] with respect to u. More precisely, the derivative component of
such a variable u represents the number ∂(K2[y])/∂u (ϱ{K1}), where ϱ is the assignment
of the leaves zeroS , oneS , and xS to the numbers 0, 1, and r.

At the end of the backward phase, K2 refers to the complete context K and no variable
is pending, so K1 is empty. Therefore, the derivative component of xS represents the
number ∂(K[y])/∂xS (ϱ). Since diff terminates in line 50 by reading xS ’s derivative
component, this number must coincide with the evaluation of E′ at r, the value that diff
must compute (Goal 5.1). The first line of backward invariant confirms this expectation:
∂(K[y])/∂xS (ϱ) is equivalent to JE′K(λX. r).

Assembling the proof. In this final segment, we discuss how to glue the presented
pieces of the proof to build the complete verification of diff. In particular, we identify
the application of the relevant logical rules.

Let us past forward the simple definitions of diff’s code, and start the discussion
from line 28, at which point the operations zeroS , oneS , addS , mulS , and the variable xS
have already been defined. Then, without advancing the execution of the code, the ghost
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variable γ is introduced by the application of rule (IntroduceContext). As a consequence
of this application, the assertion isContextγ [] holds at this point, intuitively meaning
that the set of composite nodes of the computational graph is empty. It is easy to show
that this assertion entails the forward invariant ForwardInv [].

The next step is then to reason about the execution of e under the handler of line 30.
At this point, a glossed-over detail becomes apparent: the proof involves two protocols ΨR
and ΨS . The protocol ΨR specifies the effects that diff may perform by calling addR
or mulR. The protocol ΨS describes the effects performed by addS and mulS , and
specifies the effects that e may perform from applications to these functions.

The protocol ΨR was introduced in Hypothesis 5.1. We did not need to bother
about this protocol for much of the proof, because most of Hazel reasoning rules preserve
protocols; that is, the protocols in every occurrence of ewp in such a rule are the same.

The protocol ΨS is universally quantified in the assertion e isExp E, therefore its
definition must be given as a requirement to reason about e. Fortunately, this task is
straightforward. Since addS and mulS are each defined by a single effect-performing
instruction, it suffices to rephrase the specifications of addS and mulS given by isNumDict
(Figure 5.1) in the form of a send-receive protocol:

Definition 5.14 (Protocol ΨS) The functions addS and mulS abide by the proto-
col ΨS , which is defined as follows:

ΨS ≜ ! op a b Ea Eb (op, a, b) {a isNode Ea ∗ b isNode Eb}.
?u (u) {u isNode (Ea op Eb)}

By instantiating e’s specification e isExp E with the free semiring Exp{X} as S,
the above protocol ΨS , and the predicate isNumS as isNode, one can reason about the
execution of e by means of the following ewp assertion (simplified by the rewriting rule
JEK(Leaf ) = E):

ewp (e zeroS oneS addS mulS xS) ⟨ΨS⟩{y. ∃T. y isNode T ∗ T ≡Exp{X} E} (5.2)

Now, let us reason about the expression resulting from the combination of handler
and handlee (that is, the entire expression from lines 30 to 48). This expression must
satisfy the following specification:

ForwardInv [] −−∗
ewp (deep-try (e . . . xS) with (lines 32 to 44 | lines 46 to 48)) ⟨ΨR⟩{_.
∃K, y. BackwardInv [] K y}

(5.3)

This specification states that, if the forward invariant ForwardInv [] initially holds,
then after the execution of forward and backward phases, the backward invariant holds of
variable y, resulting from the execution of e; and of complete context K. As argued in
the previous segment, the assertion BackwardInv [] K y is sufficient to justify that the
derivative component of xS represents JE′K(λX. r), the desired result of diff.

To derive Assertion 5.3, it suffices to apply rule TryWithDeep. This application
yields two proof obligations. The first proof obligation asks for a specification of the



72 5. Automatic Differentiation

handlee, and it is easily dispatched by Assertion 5.2. The second proof obligation is the
following handler judgment:

ForwardInv [] −−∗
deep-handler ⟨ΨS⟩ {y. ∃T. y isNode T ∗ T ≡Exp{X} E}

(lines 32 to 44 | lines 46 to 48)
⟨ΨR⟩ {_. ∃K, y. BackwardInv [] K y}

(5.4)

To prove this judgment, we recast it under a slightly more general form:

∀K1.


ForwardInv K1 −−∗

deep-handler ⟨ΨS⟩ {y. ∃T. y isNode T ∗ T ≡Exp{X} E}
(lines 32 to 44 | lines 46 to 48)
⟨ΨR⟩ {_. ∃K2, y. BackwardInv K1 K2 y}

(5.5)

As usual, the proof of Assertion 5.5 starts with the application of Löb’s induction
principle. Recall that the handler judgment (Figure 2.5 of Chapter 2) is the non-
separating conjunction of the specifications of the effect and return branches. Therefore,
both branches have access to the forward invariant.

The specification of the return branch (lines 46 to 48) unfolds to the following assertion,
where K1 and y are universally quantified and the intermediate variable y is the result
of e’s evaluation:

ForwardInv K1 −−∗ ewp (update y oneR) ⟨ΨR⟩{_. ∃K2, y. BackwardInv K1 K2 y}

The return branch takes control at the end of the forward phase, so the abstract
context K1 can be seen as the complete set of composite nodes constructed during this
phase. The existentially quantified variables K2 and y in the postcondition are thus
respectively instantiated with [] with y. Choosing K2 to be [] reflects the fact that no
node has yet been treated.

The assertion BackwardInv K1 [] y consists of two claims.
One of these claims asserts that, for every variable u, the derivative component of u

represents the number ∂(Leaf y)/∂u (ϱ{K1}). Therefore, one must consider two cases:
(1) if u is equal to y, then u’s derivative component must represent the number 1; and
(2) if u is different from y, then u’s derivative component must represent the number 0.
Both of these assertions hold, because, after the execution of the return branch, the
intermediate variable y is the only one whose derivative component is 1.

The other claim asserts the following equality:

JE′K(λX. r) ≡R ∂(K1[y])/∂xS (ϱ) (5.6)

The proof of this assertion exploits the fact that, according to e’s postcondition
(Equation 5.2), the variable y represents an expression T equivalent to E – there exists T ∈
Exp{X}, such that T ≡Exp{X} E and the assertion y isNode T holds. Then, by exploiting
the fact that the context K1 indeed corresponds to set of composite nodes in the graph
– the assertion isContextγ K1 holds – one can prove that filling K1 with y yields an
expression whose partial derivative with respect to xS is equivalent to JT ′K(λX. r):

isContextγ K1 −−∗ y isNode T −−∗ JT ′K(λX. r) ≡R ∂(K1[y])/∂xS (ϱ) (5.7)
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Assertion 5.7 follows by induction on T . The idea in the inductive case, when T
is an operation of the form Ea op Eb, is to unfold the assertion y isNode T (Defini-
tion 5.9) to obtain variables a and b, such that the assertions a isNode Ea, b isNode Eb,
and isBindingγ (let y = a op b) hold. One can then apply the inductive hypothesis
to Ea and to Eb. Rule (ClaimDefinedness) is also useful in this proof to rewrite K1[y]
as (K1[a]) op (K1[b]).

The second claim of the backward invariant (Claim 5.6) follows immediately from
Assertion 5.7. It suffices to use the equivalence T ≡Exp{X} E, which holds thanks to e’s
postcondition (Assertion 5.2) to rewrite T as E, thus completing the verification of the
return branch.

Now comes the crux of the proof: the verification of the effect branch (lines 32 to 44).
Indeed, as previously discussed, the forward and backward phases appear entangled in
diff’s source code, so the proofs that the forward invariant and the backward invariant
are preserved must be established in one stroke.

The effect branch handles arithmetic operations performed by e. An operation can
be either Add or a Mul , so the handler further branches into these two cases. Let us
concentrate on the verification of the Add branch (lines 35 to 38), as the verification of
the Mul branch is analogous. The specification of the Add branch unfolds to the following
assertion:

ForwardInv K1 −−∗
∀ a, b, Ea, Eb, k. a isNode Ea −−∗ b isNode Eb −−∗

∀u, Ψ′′, Φ′′.
▷ deep-handler ⟨ΨS⟩ {y. ∃T. y isNode T ∗ T ≡Exp{X} E}

(lines 32 to 44 | lines 46 to 48)
⟨Ψ′′⟩ {Φ′′}

−−∗

u isNode (Ea Add Eb) −−∗
ewp (k u) ⟨Ψ′′⟩{Φ′′}

 −−∗
ewp (lines 35 to 38) ⟨ΨR⟩{_. ∃K2, y. BackwardInv K1 K2 y}

(5.8)

The context K1 and the forward invariant come from Assertion 5.5. Because the effect
branch takes control during the forward phase, the context K1 can be thought to represent
an intermediate state of the graph. The universally quantified variables a, b, Ea, Eb, and k,
as well as the pair of isNode assertions, and k’s specification come from the unfolding of
the protocol ΨS . The variables a, b, and k occur free in the Add branch, and are thus
(intentionally) captured by the universal quantifiers of Assertion 5.8.

The mk instruction in line 35 creates a new variable u, whose value component
represents the sum of the numbers represented by the value components of a and b. At
this point, the new binding

B ≜ let u = aAdd b

must be added to the context K1 to keep the ghost variable γ up to date. Therefore,
the forward invariant ForwardInv K1 is unfolded so the assertion isContextγ K1 is ac-
cessible. Then, by rule (IntroduceBinding), the assertion isContextγ K1 is updated to
isContextγ (K1 ++B) and the new assertion isBindingγ B is forged.

The assertion isContextγ (K1 ++B) allows the proof of the invariant ForwardInv (K1 ++B).
The assertion isBindingγ B allows the proof that u represents the expression Ea Add Eb –
that is, the assertion u isNode (Ea Add Eb) holds.
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The next instruction is the invocation of the continuation in line 36. To reason about
this instruction, we must exploit k’s specification, which comes as one of the premises
of Assertion 5.8. The universally quantified variables Ψ′′, and Φ′′ of k’s specification are
respectively instantiated with ΨR and λ_. ∃K2, y. BackwardInv (K1 ++B) K2 y. To
fulfill the corresponding handler judgment that appears as one of the premises of k’s
specification, it suffices to apply Assertion 5.5, which was introduced as an inductive
hypothesis by the application of Löb’s induction principle. In this case, no execution
step is necessary to apply this inductive hypothesis, because the handler judgment that
appears in Assertion 5.8 is guarded by a “later” modality.

The application of the inductive hypothesis yields a new proof obligation: the assertion
ForwardInv (K1 ++B). This assertion and the remaining premise of k’s specification, the
assertion u isNode (Ea Add Eb), have been shown to hold after the execution of the mk
instruction (line 35). Therefore, every assertion in k’s precondition is satisfied, and
resuming the continuation with u meets the following specification:

ewp (k u) ⟨ΨR⟩{_. ∃K2, y. BackwardInv (K1 ++B) K2 y} (5.9)

This specification shows that invoking the continuation is the watershed between
forward and backward phases. Indeed, the effect branch takes control during the forward
phase, at which point the composite nodes in the graph correspond to K1. The contribution
of this branch to the construction of the graph is the addition of the node u, thereby
updating K1 to K1 ++B. Then, control is relinquished to e, who continues the construction
of the graph. In the end of the forward phase, the graph is represented by the complete
context (K1 ++B) ++K2, where K2 corresponds to the nodes further added by e. The
backward phase begins and nodes are treated in the reverse order as they were added.
Therefore, when the continuation finally terminates and transfers control back to the
effect branch, only the nodes in K2 have already been treated; the nodes K1 ++B are
pending. Indeed, as stated by the postcondition of the continuation (Assertion 5.9), the
backward invariant BackwardInv (K1 ++B) K2 y holds. Now, the goal is to show that,
after the execution of the update instructions from lines 37 to 38, the node u is correctly
treated; that is, the backward invariant BackwardInv K1 (B :: K2) y holds. In logical
terms, this goal is expressed as follows:

BackwardInv (K1 ++B) K2 y −−∗

ewp

(
update a (get_d u);
update b (get_d u)

)
⟨ΨR⟩{_. BackwardInv K1 (B :: K2) y}

(5.10)

From the mechanistic perspective, these two lines of code have a simple behavior:
they increment a’s and b’s derivative components with the derivative component of u.
From the logical perspective, however, these two lines exploit an interesting mathematical
fact. Indeed, while the assertion BackwardInv (K1 ++B) K2 y describes the derivative
component of intermediate variables in terms of the partial derivative of K2[y], the
assertion BackwardInv K1 (B :: K2) y states this description in terms of the partial
derivative of (B :: K2)[y]. Therefore, these update instructions exploit a rewriting relation
between the partial derivatives of the expressions K2[y] and (B :: K2)[y]. This relation is
formalized by the following lemma:
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Lemma 5.1 (Context-filling rule) Let R be a semiring. Let a, b, u, x, y ∈ Val be
intermediate variables. Let op be an operation. Let K1 and K2 be contexts. Let ϱ : Val→
R be an assignment. If x ̸= u, then the partial derivative of (let u = a op b :: K2)[y] with
respect to x can be rewritten as follows:

∂(let u = a op b :: K2)[y]/∂x (ϱ{K1}) ≡R

∂K2[y]/∂x (ϱ{K1 ++ let u = a op b}) +

∂K2[y]/∂u (ϱ{K1 ++ let u = a op b}) × ∂(Leaf a) op (Leaf b)/∂x (ϱ{K1})

To properly discuss this lemma, let us take a quick detour and state the chain rule in
the formalism of mathematical expressions that we have introduced:

Lemma 5.2 (Chain rule) Let R be a semiring, and let I and J be indexing sets.
Let E ∈ ExpI be an expression with formal variables indexed by I and let F : I → ExpJ
be an assignment of I to expressions with formal variables indexed by J . Let ϑ : J → R
be an assignment of J to R. The partial derivative of JEKF with respect to an index ȷ ∈ J
under ϑ can be rewritten as follows:

∂JEKF /∂ȷ (ϑ) ≡R
∑

ı∈I ∂E/∂ı (λ ı. JF (ı)Kϑ)× ∂F (ı)/∂ȷ (ϑ)

The chain rule is a well-known rule of Calculus that states how to compute the
derivative of the composition of differentiable functions. In our formalism of mathematical
expressions, the chain rule states how to compute the partial derivative of the expres-
sion JEKF , obtained by the substitution of formal variables indexed by ı ∈ I with F (ı).
The expression JEKF is thus the analogous of function composition in the traditional
account of Calculus.

Lemma 5.1 is a specialized version of the chain rule where both indexing sets I and J
are Val, and where the remaining variables E, F , ϑ, and ȷ are specialized as follows:

E : ExpVal ≜ K2[y]

F : Val→ ExpVal ≜ λx. if x = u then (Leaf a) op (Leaf b) else Leaf x

ϑ : Val→ R ≜ ϱ{K1}
ȷ : Val ≜ x

The key observation, to see that this version of the chain rule coincides with Lemma 5.1,
is that only two terms of the iterated sum in the chain rule are nonzero: the terms
corresponding to the indices x and u. Indeed, for any u ′ different from both x and u, the
value of ∂F (u ′)/∂x (ϱ{K1}) is 0. Moreover, for u ′ = x, its value is 1, and, for u ′ = u,
its value is ∂((Leaf a) op (Leaf b))/∂x (ϱ{K1}). These are the terms appearing on the
right-hand side of the equivalence of Lemma 5.1.

Let us resume the proof of Assertion 5.10 and consider a specialized version of
Lemma 5.1 when op is Add . In this case, the term ∂(Leaf a) Add (Leaf b)/∂x (ϱ{K1})
simplifies either to 0, if x ̸= a and x ̸= b; or to 1, if a ̸= b, and x = a or x = b;
or to 2, if x = a = b. Therefore, the lemma states that, to compute the derivative
∂(B :: K2)[y]/∂x (ϱ{K1}), it suffices to repeatedly increment ∂K2[y]/∂x (ϱ{K1 ++B})
with ∂K2[y]/∂u (ϱ{K1 ++B}) as many times as x appears in the list [a, b]. This is precisely
the behavior achieved by the two update instructions of Assertion 5.10.
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With the proof of Assertion 5.10, the proof of the generalised handler judgment
(Assertion 5.5) is complete. (We have omitted the verification of the Mul branch, which
is analogous to the verification of Add branch.) The generalised statement of the handler
judgment easily entails the original one (Assertion 5.4).

To conclude the verification of diff, the final step is to verify the get_v instruction
in line 50. This instruction is executed at the end of the backward phase, so the
assertion BackwardInv [] K y holds at this point. After the execution of this line, the
postcondition of diff must be established:

BackwardInv [] K y −−∗ ewp (get_v xS) ⟨ΨR⟩{y. ∃s. y isNumR s ∗ s ≡R JE′K(λX. r)}

It follows from the backward invariant that the following assertion holds:

xS isVar (_, ∂(K[y])/∂xS (ϱ)) ∗ ∂(K[y])/∂xS (ϱ) ≡R JE′K(λX. r)

Therefore, reading xS ’s derivative component yields a value representation of JE′K(λX. r),
thus concluding the verification of diff.

5.5 Related work

Krawiec et al. [KKP+22] study reverse-mode AD from a denotational semantics point of
view. They introduce a pure higher-order calculus that includes standard constructs such
as sums and pairs as well as real numbers and arithmetic operations on real numbers, such
as addition and multiplication. Their calculus is endowed with a type system such that a
well-typed program denotes a multivariate mathematical function from reals to reals. One
of the contributions of the paper is to present several source-to-source transformations that
take a well-typed program as input and construct a program that denotes the derivative
of the function denoted by the original program. (The meaning of derivative is defined
as an operation over the Jacobian of the function denoted by the original program.)
These transformations follow different strategies (forward-mode or reverse-mode) and
have different time and space requirements. The main contribution of the paper is the
proof that the reverse-mode transformation is correct.

Pearlmutter and Siskind [PS08] introduce VLAD, a calculus that is capable of
expressing functional, pure programs. VLAD includes a first-class construct

←−
J to

compute derivatives, which allows programs to take higher-order derivatives. The method
to effectively compute derivatives is defined on paper as a source-to-source transformation:
given a VLAD program as input, the method produces a VLAD program that does not
use
←−
J . The paper announces a prototype implementation of an interpreter for VLAD,

named Stalin∇. To handle
←−
J , Stalin∇ relies on the interpreter’s ability to reflectively

inspect programs at runtime.
Sherman et al. [SMC21] focus on expressiveness: they wish to extend the applicability

of automatic differentiation. They introduce λS , a programming language that includes
higher-order functions, higher-order derivatives, and constructs for integration, root-
finding and optimization. To assign meaning to λS programs, the authors follow a
denotational approach. In doing so, they must solve the problem of interpreting programs,
such as max and min, whose denotations are not differentiable everywhere. Their key idea
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is to generalize the notion of derivative to Clarke derivatives, which are defined even at
points where a function is not differentiable in the traditional sense. Therefore, automatic
differentiation of λS programs is the computation of their Clarke derivatives. The paper
discusses the implementation of a Haskell library to compute the Clarke derivatives, with
arbitrary precision, of programs written in a Haskell embedding of λS .

An efficient implementation of effect handlers, with support for one-shot continuations
only, has appeared in Multicore OCaml [SDW+21]. The HH implementation that we
present (Figure 5.3) is inspired by Wang et al. [WR18, WZD+19] and by Sivaramakrishnan
[Siv18]. However, the manner in which we package reverse-mode AD as a library, using a
tagless final representation of expressions [CKS09, Kis10], seems new. This minimalist
library is remarkable insofar as it offers a very simple, pure interface, yet its implementation
is arguably rather subtle and involves dynamically-allocated mutable state, higher-order
functions, and effect handlers. Another implementation of reverse-mode AD, written in
Frank, is documented by Sigal [Sig21]. It differs from ours in several aspects. First, Frank
does not have primitive mutable state, so it is simulated via effect handlers. Second, Sigal
presents several AD algorithms, including a forward-mode algorithm and a reverse-mode
algorithm that performs checkpointing.
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Chapter 6

A Separation Logic for Effect
Handlers and Multi-Shot

Continuations

In this chapter, we introduce Maze, a Separation Logic for effect handlers and multi-shot
continuations; that is, a Separation Logic for reasoning about effect handlers that capture
continuations that can be invoked multiple times.

As discussed in Chapter 2, the frame rule is unsound in the presence of multi-shot
continuations. However, we show that Maze admits a restricted version of the frame rule,
allowing users to apply this standard and powerful reasoning principle to fragments of the
code that do not exploit effect handlers, but that may coexist with program fragments
that do exploit this feature.

To assess the applicability of the logic, we consider two case studies: (1) the verification
of a simple SAT solver using uses multi-shot continuations to implement backtracking,
and (2) the assignment of reasoning rules to an encoding of callcc and throw using
effect handlers and multi-shot continuations.

6.1 Syntax and semantics of MazeLang

In this section, we introduce MazeLang, a formal calculus for effect handlers and multi-
shot continuations. Except for the one-shot policy on continuations, MazeLang follows
the same design choices as HH does. So, apart from the discussion on “one-shot versus
multi-shot”, all the remarks raised in Subsection 2.1 of Chapter 2 apply to MazeLang. In
particular, MazeLang has support for dynamically allocated mutable state; for unnamed
effects; for shallow handlers, as a primitive construct; and for deep handlers, as a derived
construct.

The syntax of MazeLang programs appears in Figure 6.1. It includes roughly the
same constructs as HH does. There is only one new construct, which we highlight by
rendering it in green. It is the construct representing first-class continuations. In HH ,
a first-class continuation assumes the form cont (ℓ,N), where ℓ is a memory location
indicating whether the continuation has already been called. This is the device through
which HH implements the one-shot policy. In MazeLang, we wish to lift this restriction,
so first-class continuations assume the simpler form cont N , where the memory location ℓ
is simply removed. For a discussion of the remaining constructs of the language, we refer
the reader to Chapter 2.

The set of reduction rules of MazeLang appears in Figure 6.2. Again, the semantics
of MazeLang follows roughly the same reduction rules as HH does, with the exception of
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Values, expressions, and operations

Op ∋ ⊙ ::= + | not | and | or | ==
Val ∋ h, r, v ::= () | b (∈ Bool) | i (∈ Int) | ℓ (∈ Loc) | ⊙ (∈ Op)

| rec f x. e | (v, v) | inji v | cont N
Expr ∋ e ::= v | x | e e | (e, e) | proji e | inji e

| match e with (v | v) | if e then e else e | ref e | ! e | e := e
| do e | eff v N | try e with (v | v)

Evaluation contexts

Ectx ∋ K ::= • | e K | K v | (e,K) | (K, v) | proji K | inji K
| match K with (v | v) | if K then e else e
| ref K | !K | e := K | K := v | do K
| try K with (v | v)

Nctx ∋ N ::= • | e N | N v | (e,N) | (N, v) | proji N | inji N
| match N with (v | v) | if N then e else e
| ref N | !N | e := N | N := v | do N

Figure 6.1: Syntax of MazeLang.

two rules, which, again, we highlight by rendering them in green: (1) rule MazeTryWith-
EffectStep, which states how evaluation contexts are captured and reified as first-class
continuations; and (2) rule MazeResumeStep, which states how continuations can be
invoked.

Under rule MazeTryWithEffectStep, when an active effect eff v N reaches a
(shallow) handler, the handler’s effect branch h is called with the value v and with the
first-class continuation cont N . In contrast, under HH ’s semantics, the context N is
reified as cont (ℓ,N), where ℓ is a fresh memory location initially holding false.

Under rule MazeResumeStep, a continuation cont N is resumed when it is applied to
a value v. In contrast, under HH ’s semantics, when a continuation cont (ℓ,N) is applied
to a value v, it must be the case that ℓ stores false, otherwise this instruction gets
stuck. If ℓ stores false, then the continuation is resumed and the state of ℓ is updated
to true. Therefore, whereas in HH continuations abide by a one-shot policy enforced
by this location ℓ, the invocation of a continuation in MazeLang is unrestricted; it can
happen multiple times.

For a discussion of the remaining reduction rules, we refer the reader to Chapter 2.

6.2 Program logic

The main idea of Hazel is the introduction of the notion of protocols, which, when
combined with the Iris base logic, let us introduce an expressible specification language
and powerful reasoning rules. Indeed, the previous chapters attest that protocols provide
a natural way to reason about programs performing and handling effects. Therefore,
we wish to keep protocols as the logical means by which one specifies the effects that a
program may perform.
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Reduction relation e / σ → e / σ

MazeBetaStep
(rec f x. e) v / σ → e{(rec f x. e)/f}{v/x} / σ

MazeProjStep
proji (e1, e2) / σ → ei / σ

MazeCaseStep
match inji v with (v1 | v2) / σ → vi v / σ

MazeIfStep
if b then e1 else e2 / σ → if (b = true) then e1 else e2 / σ

MazeAllocStep
ℓ /∈ dom(σ)

ref v / σ → ℓ / σ[ℓ 7→ v]

MazeReadStep
σ(ℓ) = v

! ℓ / σ → v / σ

MazeWriteStep
ℓ ∈ dom(σ)

ℓ := v / σ → () / σ[ℓ 7→ v]

MazeDoStep
do v / σ → eff v • / σ

MazeEffStep
N1 ̸= •

N1[eff v N2] / σ → eff v (N1[N2[•]]) / σ

MazeTryWithEffectStep
try (eff v N) with (h | r) / σ → h v (cont N) / σ

MazeTryWithReturnStep
try v with (h | r) / σ → r v / σ

MazeResumeStep
(cont N) v / σ → N [v] / σ

MazeContextStep
e / σ → e′ / σ′

K[e] / σ → K[e′] / σ′

Figure 6.2: Reduction rules of MazeLang.

However, something must change. If we simply replay the steps previously taken in
the construction of ewp, then we would obtain the logic AwkwardHazel, which enjoys the
same reasoning principles as Hazel does, but applies to programs written in MazeLang
instead of HH . The logic AwkwardHazel would be sound, but too restrictive to reason
about MazeLang programs. Indeed, whereas Hazel is well-suited for HH , there is a
mismatch between MazeLang and AwkwardHazel: even though multi-shot continuations
are allowed in MazeLang, the AwkwardHazel logic would apply only to fragments where
continuations abide by a virtual one-shot policy. Indeed, since the frame rule is sound
in AwkwardHazel, it would not be possible to apply the logic to programs exploiting multi-
shot continuations, because multi-shot continuations break the frame rule (Chapter 2).

Recall that the upward closure is the key device by which Hazel reflects the one-shot
discipline in the logic. Indeed, the following unfolding of the upward closure

(↑ Ψ) u Φ′ ≜ ∃Φ. Ψ u Φ′ ∗ (∀w. Φ(w) −−∗ Φ′(w))
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Weakest precondition ewp e ⟨Ψ⟩{Φ}

ewp v ⟨Ψ⟩{Φ} ≜ ˙|⇛Φ(v)

ewp (eff v N) ⟨Ψ⟩{Φ} ≜ (↑2Ψ) v (λw. ▷ ewp N [w] ⟨Ψ⟩{Φ})

ewp e ⟨Ψ⟩{Φ} ≜ ∀σ. S(σ) ≡−∗

∃e′, σ′. e / σ −→ e′ / σ′ ∗
∀e′, σ′. e / σ −→ e′ / σ′ ≡−∗ ▷ ˙|⇛

S(σ′) ∗ ewp e′ ⟨Ψ⟩{Φ}

Figure 6.3: Definition of Maze’s ewp.

reveals that the “specification of the continuation”, the predicate Φ′, can be exploited at
most once, because it appears as the conclusion of an affine assertion.

This observation hints to the idea of changing this definition to allow the predicate Φ′

to be used multiple times. To achieve such a property in Separation Logic, the most
natural solution is to guard the assertion (∀w. Φ(w) −−∗ Φ′(w)) by a persistently modality.
This idea works. It leads to the following alternative definition of the upward closure,
named the persistent upward closure:

Definition 6.1 (Persistent upward closure) The persistent upward closure of a pro-
tocol Ψ is defined as follows:

↑2Ψ ≜ λuΦ′. ∃Φ. ΨuΦ ∗ (2∀w. Φ(w) −−∗ Φ′(w))

To assign the persistent upward closure a similar algebraic description as we did for
the upward closure, we introduce the notion of persistently monotonic protocols:

Definition 6.2 (Persistently monotonic) A protocol Ψ is persistently monotonic if
the following sequent is derivable:

⊢ ∀u,Φ,Φ′. (2 ∀w. Φ(w) −−∗ Φ′(w)) −−∗ ΨuΦ −−∗ ΨuΦ′

The persistent upward closure ↑2Ψ can thus be characterized as the smallest persis-
tently monotonic protocol that is greater than Ψ. The terms smallest and greater ought
to be considered according to the protocol ordering (Definition 2.8).

The bottom protocol is persistently monotonic, and the sum of persistently monotonic
protocols also is persistently monotonic. However, in general, an arbitrary send-receive
protocol is not. To construct a persistently monotonic protocol in the style of send-receive
protocols, we introduce persistent send-receive protocols:

Definition 6.3 (Persistent send-receive protocol) Let x⃗ and y⃗ be lists of binders,
let v and w be values, and let P and Q be assertions. The persistent send-receive protocol
is defined as follows:

2 ! x⃗ (v) {P}. ? y⃗ (w) {Q} ≜ λuΦ. ∃ x⃗. u = v ∗ P ∗ (2∀ y⃗. Q −−∗ Φ(w))

The persistent upward closure enjoys similar properties as the upward closure does.
Here are some of the properties that are relevant to this chapter:
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MazeValue
Φ(v)

ewp v ⟨Ψ⟩{Φ}

MazeDo
(↑2Ψ) vΦ

ewp (do v) ⟨Ψ⟩{Φ}

MazeMonotonicity
ewp e ⟨Ψ1⟩{Φ1}

Ψ1 ⊑ Ψ2 2 ∀w.Φ1(w) −−∗ Φ2(w)

ewp e ⟨Ψ2⟩{Φ2}

MazeMonotonicityPure
ewp e ⟨⊥⟩{Φ1} ∀w.Φ1(w) −−∗ Φ2(w)

ewp e ⟨⊥⟩{Φ2}

MazeBind
ewp e ⟨Ψ⟩{w. ewp N [w] ⟨Ψ⟩{Φ}}

ewp N [e] ⟨Ψ⟩{Φ}

MazeBindPure
ewp e ⟨⊥⟩{w. ewp K[w] ⟨Ψ⟩{Φ}}

ewp K[e] ⟨Ψ⟩{Φ}

MazeTryWithShallow
ewp e ⟨Ψ⟩{Φ}

shallow-handlerM ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′}
ewp (try e with (h | r)) ⟨Ψ′⟩{Φ′}

MazeTryWithDeep
ewp e ⟨Ψ⟩{Φ}

deep-handlerM ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′}
ewp (deep-try e with (h | r)) ⟨Ψ′⟩{Φ′}

Figure 6.4: Reasoning rules.

Lemma 6.1 (Properties of the persistent upward closure) The persistent upward
closure enjoys the following properties:

1. For every Ψ, the protocol ↑2Ψ is persistently monotonic.

2. The persistent upward closure has no action over persistently monotonic protocols:

↑2Ψ ≡ Ψ (for every pers. monotonic protocol Ψ)

3. The persistent upward closure distributes over the protocol sum:

↑2 (Ψ1 +Ψ2) ≡ (↑2Ψ1) + (↑2Ψ2) (for every Ψ1 and Ψ2)

6.2.1 Weakest precondition and reasoning rules

Maze’s notion of weakest precondition simply replaces the upward closure with the
persistent upward closure. The same notation ewp as the one used in Hazel is used
to denote Maze’s weakest precondition. This overloading is bound to the scope of this
chapter.

The definition of Maze’s ewp appears in Figure 6.3. This definition differs from
Hazel’s definition of ewp in one single place (highlighted in green): the case of an active
effect eff v N uses the persistent upward closure ↑2Ψ rather than ↑ Ψ. Therefore, when
performing an effect, a program should abide by the persistent upward closure ↑2Ψ.

There are two important consequences of this change to the reasoning principles of
Maze.
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shallow-handlerM ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′} ≜
(∀ v. Φ(v) −−∗ ewp (r v) ⟨Ψ′⟩{Φ′}) ∧
(∀ v, k. (↑2Ψ) v (λw. ewp (k w) ⟨Ψ⟩{Φ}) −−∗ ewp (h v k) ⟨Ψ′⟩{Φ′})

deep-handlerM ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′⟩{Φ′} ≜
(∀v. Φ(v) −−∗ ewp (r v) ⟨Ψ′⟩{Φ′}) ∧∀ v, k.


(↑2Ψ) v (λw. ∀Ψ′′, Φ′′.

▷ deep-handlerM ⟨Ψ⟩{Φ} (h | r) ⟨Ψ′′⟩{Φ′′} −−∗
ewp (k w) ⟨Ψ′′⟩{Φ′′})

−−∗
ewp (h v k) ⟨Ψ′⟩{Φ′}


Figure 6.5: Definitions of the predicates shallow-handlerM and deep-handlerM .

The first consequence is that every non-persistent assertion vanishes when a program
performs an effect; that is, non-persistent assertions cannot be framed around programs
that perform effects. In other words, non-persistent assertions that hold before a do v
instruction, do not hold when the program fragment that performed this effect is resumed.
This restriction is in agreement with the fact that, in MazeLang, when a program performs
an effect, this program is susceptible of being resumed multiple times.

The second consequence is the desired reasoning principle allowing one to reason
about effect handlers that invoke continuations multiple times. This expressive power is
attested by the study of MazeLang reasoning rules (in particular, the reasoning rules for
shallow and deep handlers), which we shall discuss next.

The reasoning rules induced by Maze’s definition of ewp appear in Figure 6.4. As
usual, we highlight in green the changes with respect to the rules of Hazel. We narrow
the discussion to the rules that include such changes.

Rule MazeDo formalizes the claim that “non-persistent assertions vanish when per-
forming effects”. Indeed, after unfolding the definition of the persistent upward closure in
this rule, it is easy to see that, to reason about the instruction do v, one must establish a
goal of the form 2 ∀w. Q(w) −−∗ Φ(w). Because this assertion is guarded by a persistently
modality, non-persistent assertions in the proof context cannot be used to derive such a
goal.

Rule MazeMonotonicity differs from rule Monotonicity (Figure 2.4 of Chapter 2)
in the inclusion of a persistently modality in the weakening relation between the postcon-
ditions Φ1 and Φ2: 2∀w.Φ1(w) −−∗ Φ2(w). This modification is necessary, because, in
the presence of multi-shot continuations, a program e might terminate multiple times. For
each possible execution of e, this premise must be exploited to weaken e’s postcondition.
As a consequence, the frame rule no longer holds for an arbitrary protocol Ψ:

R ∗ ewp e ⟨Ψ⟩{Φ} ⊢ ewp e ⟨Ψ⟩{w.R ∗ Φ(w)}
The following restricted statement of the frame rule, however, is sound :

R ∗ ewp e ⟨⊥⟩{Φ} ⊢ ewp e ⟨⊥⟩{w.R ∗ Φ(w)}

The derivation of this rule follows from the straightforward application of rule Maze-
MonotonicityPure. Rule MazeMonotonicityPure is an alternative monotonicity
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reasoning principle, which is incomparable to rule MazeMonotonicity. It applies to
programs that abides by the empty protocol, thus it cannot be applied in contexts where
programs perform effects. In its premise, the weakening relation between the postcon-
ditions Φ1 and Φ2 is not guarded by a persistently modality, therefore non-persistent
assertions can be used to establish this relation.

Rule MazeTryWithShallow allows reasoning about shallow handlers. The rule
states that, if the handlee e abides by a protocol Ψ and a postcondition Φ, then the
expression resulting from installing a shallow handler over e conforms to a protocol Ψ′

and a postcondition Φ′. The protocol Ψ describes e’s effects, whereas the protocol Ψ′

describes the effects that the shallow handler itself may perform. The claim that the
answer provided by the handler to e’s effects is in accordance with the agreed protocol Ψ
is captured by the shallow-handler judgment shallow-handlerM . Its definition appears
in Figure 6.5. As Hazel’s handler judgment shallow-handler (Figure 2.5 of Chapter 2), it
is defined as the non-separating conjunction of the specifications of the return and the
effect branches. The only difference with respect to Hazel’s version of the judgment is
the by-now-customary use of the persistent upward closure instead of the upward closure.
That is how the logic allows one to reason about multiple calls to the continuation. Indeed,
to see how the logic allows reasoning about multiple continuation invocations, it suffices
to unfold the definition of the persistent upward closure in the specification of the effect
branch:

∀ v, k. (↑2Ψ) v (λw. ewp (k w) ⟨Ψ⟩{Φ}) −−∗ ewp (h v k) ⟨Ψ′⟩{Φ′}

becomes

∀ v, k. (∃Q. Ψ v Q ∗ (2 ∀w. Q(w) −−∗ ewp (k w) ⟨Ψ⟩{Φ})) −−∗ ewp (h v k) ⟨Ψ′⟩{Φ′}

This unfolding reveals that the persistently modality introduced by the persistent
upward closure guards the specification of the continuation k. Therefore, during the
verification of the effect branch h, a user can exploit the specification of the continuation k
multiple times, and thereby reason about multiple invocations.

Rule MazeTryWithDeep allows reasoning about deep handlers. Similar to the
reasoning rule for shallow handlers, rule MazeTryWithDeep states that installing a deep
handler over an expression e has the consequence of shifting the protocol Ψ and the
postcondition Φ to Ψ′ and Φ′. The handlee performs effects according to Ψ, and the
handler must also conform to this protocol when replying to these requests. The claim
that the handler conforms to Ψ is expressed by the deep-handler judgment deep-handlerM ,
whose definition appears in Figure 6.5. Like in the case of the shallow-handler judgment,
the only difference with respect to Hazel’s version of the deep-handler judgment is the
use of the persistent upward closure, which allows a user of the logic to reason about
multiple calls to a continuation when verifying the handler’s effect branch.

6.2.2 Soundness

Here is the statement of Maze’s adequacy theorem, which states that reasoning about
programs in terms of ewp is sound:

Theorem 6.1 (Adequacy) Let e be a closed expression. If ewp e ⟨⊥⟩{Φ} holds, then e
is safe.
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The theorem states that, if a user of the logic establishes that the assertion ewp e ⟨⊥⟩{Φ}
holds, then e is safe. Recall the definition of safe (Section 2.3.3 of Chapter 2): the execu-
tion of e must either diverge or terminate with a value; it cannot crash or terminate with
an unhandled effect.

Proof By unfolding both Hazel’s and Maze’s definitions of ewp, it is easy to see that
these two notions coincide when the specified protocol is ⊥. In particular, the Maze
assertion ewpMaze e ⟨⊥⟩{Φ} entails the Hazel assertion ewpHazel e ⟨⊥⟩{Φ}:

ewpMaze e ⟨⊥⟩{Φ} −−∗ ewpHazel e ⟨⊥⟩{Φ}

Therefore, to complete the proof, it suffices to apply the adequacy theorem of the
Hazel logic (Theorem 2.1 of Chapter 2).

6.3 Case studies

This section puts Maze into practice by studying its application to two case studies.
In the first case study, we present the verification of a simple SAT solver. Even though

the solver is concisely implemented, its behavior is quite intricate. We are nonetheless
capable of writing a simple specification of this program accompanied of an equally simple
proof of correctness.

In the second case study, we devise reasoning rules that tame the infamous undelimited-
control operators callcc and throw. We study an encoding of these operators in Maze-
Lang. The encoding exploits a toplevel handler, which is assumed to be the topmost
frame in the evaluation stack. Under this assumption, callcc and throw can be encoded
in MazeLang as simple effect-performing instructions.

6.3.1 Verifying a simple SAT solver

Implementation

The implementation of the SAT solver appears in Figure 6.6. The solver is presented as a
function satisfy. The informal contract by which this function abides is straightforward:
when queried with a propositional formula, the function satisfy returns a Boolean
indicating whether this formula is satisfiable.

A propositional formula can be constructed in one of three ways: it is either the
conjunction of two formulas p1 and p2, noted And (p1, p2); or the disjunction of two
formulas p1 and p2, noted Or (p1, p2); or a literal, which consists of a pair of a Boolean
sign b and an index i, and which is noted Lit (b, i).

An index i specifies a Boolean variable xi, and a sign b indicates whether the truth
value of the literal Lit (b, i) corresponds to the value xi or to its negation ¬xi.

Propositional formulas can be represented in MazeLang using binary sums:

And (p1, p2) ≜ inj1 (inj1 (p1, p2))
Or (p1, p2) ≜ inj1 (inj2 (p1, p2))
Lit (b, i) ≜ inj2 (b, i)
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1 let rec interp p =
2 match p with
3 ( fun pair -> match pair with
4 ( fun (* And. *) (p1 , p2) ->
5 (interp p1) and (interp p2)
6 | fun (* Or. *) (p1 , p2) ->
7 (interp p1) or (interp p2)
8 )
9 | fun (* Lit. *) (b, i) ->

10 if b then (do i) else neg (do i)
11 )
12
13 let satisfy p =
14 let m = create_map () in
15 deep-try (interp p) with
16 (* Effect branch. *)
17 ( fun i k ->
18 match lookup m i with
19 ( fun (* Some. *) b ->
20 k b
21 | fun (* None. *) _ ->
22 (insert m i true; k true)
23 or
24 (insert m i false;
25 (k false)
26 or
27 (delete m i; false)
28 )
29 )
30 (* Return branch. *)
31 | fun b -> b
32 )

Figure 6.6: A simple SAT solver in MazeLang.
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Informally, a propositional formula p is satisfiable if there exists an assignment φ :
Int fin−→ Bool 1 (i.e., a mapping from variable indices i to Booleans), such that the
interpretation of p under φ is true. The purpose of the solver satisfy is thus to decide
whether such an assignment exists.

The question we wish to answer is: at least from the mechanistic point of view, can we
explain how does satisfy achieve that? Fortunately, the dynamic behavior of satisfy
has a striking similarity with an episode that took place in an exquisite school. The
director of this school, Professor Chandler, was fascinated by SAT solvers, and wished
to devise a system of his own. However, to achieve this task, he did not want to rent
computing hours from some fast machine; Professor Chandler knew a far cheaper currency:
students’ hours. The Professor would often place a student in a special desk containing a
propositional formula, and would ask the student to compute the interpretation of this
formula. Of course, in general, such a task cannot be realized if the formula contains
unassigned literals, so the desk was equipped with two buttons: one labeled lookup and
the other one labeled exit.

If the student pressed the lookup button, then the Professor would reach the student,
and the student would have the right to ask the Professor the assignment of an index i.
The Professor listed these indices in a private blackboard, together with the Boolean
answer he provided to each index. If the Professor had already provided an answer to an
index i, then he would simply reply to the student with the corresponding Boolean, and
would not alter the board. If, on the other hand, the index i did not appear in the board,
then the Professor would add i to the right-end of the list together with the Boolean true,
which was the answer that he would give by default.

When the student was done interpreting the formula, thus finding a Boolean b, the
student would press the exit button. If b was true, then the student was free and
the formula was deemed satisfiable. If b was false, then things would go differently.
Professor Chandler would first erase from the blackboard the greatest suffix of indices
whose assignment was false. If the resulting list was empty, then the student was free
and the formula was deemed unsatisfiable. Otherwise, the Professor would change the
assignment of the right-most index i from true to false and would kindly ask the student
two things: (1) to forget the indices that were previously in the blackboard and the old
assignment of i, and (2) to restart the computation. The student had no other option,
but to accept this demand, and the game would go on until the Professor had determined
whether or not the formula was satisfiable.

The runtime behavior of the solver satisfy is indeed similar to this game. This solver
calls the function interp (line 1), which computes the interpretation of a given formula p.
During this computation, if interp stumbles upon a literal with index i, then it performs
an effect with payload i. The student represents the function interp, and pressing the
lookup button represents the action of performing an effect. The Professor represents the
handler installed by satisfy in line 15 to monitor the execution of interp.

When the handler intercepts an effect thrown by interp carrying a payload i, the
handler performs a lookup in a map m (line 18) assigning indices to Booleans. This

1The type A fin−→ B denotes partial functions. A partial function f : A fin−→ B has a domain dom(f) ⊆ A,
such that, for every a ∈ A, the term f(a) is defined if and only if a ∈ dom(f). We write f(a) = undefined
to indicate that f is not defined at a.
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map is allocated in line 14, before the execution of interp. The Professor’s blackboard
represents this map.

The lookup operation returns a binary sum indicating whether m contains the index i.
In the affirmative case, interp is immediately resumed with the Boolean b (line 20)
associated to i. In the negative case, the handler inserts the key-value pair (i, true) to
the map, and resumes interp with true.

If interp evaluates to true, then it means that p is satisfiable, therefore the handler
terminates with true. The specification of this returned Boolean is that the current
assignment stored in m can be extended in such a way that the interpretation of p is true.

If interp evaluates to false, then, under the assignment of i to true, the map
cannot be extended in such a way that the interpretation of p is true. However, since
continuations are multi-shot, the handler can implement a backtracking technique by
resuming interp a second time, but with a different answer. In line 24, the handler
overwrites the map with the key-value pair (i, false) and resumes interp with false.

The result of the handler is the result of interp’s evaluation. If interp evaluates
to false, however, the handler has also a side effect: it erases the binding (i, false) from
the map.

Without the deletion of the index i, further queries performed by interp would be
incorrectly answered by the handler with false. The following formula, for example,
would be deemed as unsatisfiable, if this deletion instruction was not performed; that is,
if lines 25 to 27 were replaced with the instruction k false:

Or (And (Lit (true, 0), Lit (false, 0)), And (Lit (true, 1), Lit (false, 0)))

To improve readability, let us rewrite this formula using a more natural notation:

(x0 ∧ ¬x0) ∨ (x1 ∧ ¬x0)

Because the literal x0 appears first, the first query of interp is the index 0. The
handler answers with true, and writes the binding (0, true) to the map. The second query
of interp is the index 1. After trying both possible answers, true and false, the handler
backtracks to the index 0 in a state where the map contains the binding (1, false), which
was the last attempt of answer to the index 1. The handler modifies the value associated
to 0 from true to false, and resumes interp with false. Now, because the map still
contains the binding of (1, false), further queries to the index 1 are immediately replied
with false. As a result, the handler never explores the assignment of 0 to false and
of 1 to true. So the formula is deemed unsatisfiable, even though, under this assignment,
its interpretation is true.

Specification

Recall satisfy’s informal contract: satisfy decides whether a given a formula p is
satisfiable. The formal specification of satisfy rephrases this informal contract in the
language of the Maze logic:

Statement 6.1 (Formal specification of satisfy) The specification of satisfy is
expressed as follows:

ewp (satisfy p) ⟨⊥⟩{b. b = satisfiable ∅ p}
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This statement depends on the binary predicate satisfiable, which relates an assign-
ment φ to a formula p if φ can be extended with an assignment φ′, such that the interpre-
tation of p under this extended assignment is true. In the degenerate case where φ is the
empty assignment, such as in the postcondition of satisfy, the assertion satisfiable ∅ p
captures the notion of a satisfiable formula.

To introduce satisfiable, we must first formally define the interpretation of formula
under an assignment and the extension of an assignment.

Definition 6.4 (Formula interpretation) The interpretation of a formula is expressed
by the function J_K_ : Formula → (Int fin−→ Bool) fin−→ Bool , inductively defined as follows:

JAnd (p1, p2)Kφ ≜ Jp1Kφ ∧ Jp1Kφ
JOr (p1, p2)Kφ ≜ Jp1Kφ ∨ Jp1Kφ
JLit (b, i)Kφ ≜ if b then φ(i) else ¬φ(i)

If a formula p contains a literal Lit (_, i), such that i /∈ dom(φ), then JpKφ is undefined:
JpKφ ≜ undefined

The definition of the interpretation of a formula is straightforward. Perhaps one
unusual detail is that the function J_K_ is partial: the interpretation of a formula p under
an assignment φ is undefined when there exists at least one literal Lit (_, i) in p, such
that φ(i) is undefined. With a partial definition, the meaning of the equality JpKφ = b is
twofold: not only it asserts that the interpretation of p under φ is b, but it also asserts
that dom(φ) includes every literal in p. (This is not crucial though: the interpretation
could be defined as a total function, by giving a default value to unassigned literals, and
asserting, when necessary, that every literal in p is included in dom(φ).)

Definition 6.5 (Assignment extension) The extension of an assignment _ ++_ :
(Int fin−→ Bool)→ (Int fin−→ Bool)→ (Int fin−→ Bool) is defined as follows:

(φ ++φ′)(i) ≜


φ(i) if i ∈ dom(φ)
φ′(i) if i /∈ dom(φ) and i ∈ dom(φ′)
undefined otherwise

The extension of φ with φ′ is basically the union of these maps, with priority given to φ
where their domains overlap; that is, if i ∈ dom(φ) ∩ dom(φ′), then (φ ++φ′)(i) = φ(i).

We are finally in position to introduce the formal definition of satisfiable:

Definition 6.6 (Satisfiable formula) Let φ be an assignment. Let p be a formula.
The proposition “satisfiable φp” states that φ can be extended with an assignment φ′, such
that the interpretation of p under φ ++φ′ is defined and evaluates to true:

satisfiable φp ≜ ∃φ′. JpK(φ ++φ′) = true

The proposition satisfiable φp inhabits the universe of meta-level assertions Prop.
However, the postcondition of satisfy (Specification 6.1) uses satisfiable φp as a Boolean.
This apparent misuse is justified by the fact that satisfiable is decidable:

Lemma 6.2 (Decidability of satisfiable) For every assignment φ and formula p, the
proposition “satisfiable φp” is decidable.
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isMap[A,B ] : Val→ (A fin−→ B)→ iProp

CreateMap
ewp (create_map()) ⟨⊥⟩{m. isMapm∅}

Insert
isMapmφ −−∗ ewp (insert m i b) ⟨⊥⟩{_. isMapmφ[i 7→ b]}

Delete
isMapmφ −−∗ ewp (delete m i) ⟨⊥⟩{_. isMapm (φ \ i)}

Lookup

isMapmφ −−∗ ewp (lookup m i) ⟨⊥⟩

 y. isMapmφ ∗


if i ∈ dom(φ) then
y = inj1 (φ(i))

else
y = inj2 ()




Figure 6.7: Specification of a map library.

A meta-level proposition P : Prop is decidable if either P is provable or ¬P is provable.
To show that satisfiable φp is decidable, for every φ and p, we show the existence of a de-
cision procedure: a method that, for every φ and p, tells whether satisfiable φp is provable.
The aforementioned misuse of the proposition satisfiable φp as a Boolean in satisfy’s
postcondition is thus justified by an implicit coercion that applies satisfiable φp to its
decision procedure, which produces a Boolean result. 2

At a high-level perspective, this procedure works in three steps. First, it finds all the
literals in p that do not have an assignment in φ. Because p is finite, there can only be a
finite number of such literals, say n. Second, it enumerates all possible 2n assignments of
these n literals. Third, and finally, it checks whether, among these 2n assignments, there
exists at least one assignment φ′, such that the interpretation of p under the extension of
φ with φ′ is true. In the affirmative case, the proposition satisfiable φp is provable, and,
otherwise, it is not.

Intuitively, this procedure is the meta-level equivalent of the solver satisfy. Because
it inhabits the level of mathematical functions, it does not need to care about questions
of efficiency; the fact that it terminates, because it performs an exhaustive search over a
finite set, is already good enough.

Verification

Let p be a formula. In this segment, we present the proof that satisfy p meets its
formal specification (Specification 6.1): that this expression produces a Boolean b, such
that b = satisfiable ∅ p.

2An alternative that avoids this implicit coercion would be to perform a case distinction on the result b
of the solver as follows: if b = true then satisfiable ∅ p else ¬satisfiable ∅ p. However, we prefer the
implicit coercion, because it leads to a concise specification and to concise assertions during the proof.
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(IntroduceBlackboard) True −−∗ ˙|⇛∃γ. blackboardStγ ∅ ∗ studentViewγ ∅

(CheckBlackboard) blackboardStγ φ −−∗ studentViewγ φ
′ −−∗ φ = φ′

(EraseBlackboard) blackboardStγ _ −−∗
studentViewγ _ −−∗

˙|⇛
{

blackboardStγ φ ∗
studentViewγ φ

Figure 6.8: Logical rules governing the assertions blackboardSt and studentView

Map operations. The verification of satisfy does not depend on the internals of
the map operations (create_map, insert, delete, lookup); it simply assumes that these
operations can be used according to the logical interface that appears in Figure 6.7.

This interface exposes an abstract representation predicate isMap that relates Maze-
Lang values to finite maps φ : A fin−→ B, where the types A and B appear as parameters
of isMap. In the scope of this proof, φ is always an assignment, so the types A and B
are always Int and Bool , respectively. Therefore, to reduce the visual clutter, we omit
these type parameters.

Let us discuss the specifications of the map operations that appear in Figure 6.7.
Specification CreateMap states that calling the operation create_map yields a value m
representing the empty map: the assertion isMapm∅ holds. Specification Insert states
that the instruction insert m i b inserts the binding (i, b) to the map represented
by m (previous inserted bindings are overwritten). Specification Delete states that the
instruction delete m i erases i from the map. Specification Lookup states that the
lookup instruction lookup m i produces a binary sum y: if i is in the map represented
by m, then y = inj1 (φ(i)); otherwise, y = inj2 ().

Ghost state and the Lookup protocol. There are two key ideas in the proof. The
first one is the introduction of a piece of ghost state to ensure that both the handlee
(the expression interp p) and handler agree on the assignment φ. The second one is the
introduction of a protocol to describe interp’s effects.

The informal reason why the ghost state is necessary is that interp returns multiple
times, so one cannot assign interp a postcondition asserting that it computes the inter-
pretation of p under a fixed φ. Each time interp returns, it computes the interpretation
of p under a different assignment φ′. Therefore, when writing interp’s postcondition,
we quantify over φ′ existentially. To express that φ′ is equal to the handler’s private
assignment φ (represented by the value m allocated in line 14), we introduce a ghost
cell γ that stores an assignment φ and we claim that the state of γ is φ′.

To formalize this claim, the contents of γ are taken in the following camera:

Auth(Ex(Int fin−→ Bool))

This choice of camera lets us introduce two different assertions whose meaning is the
same: they both assert what is the state of γ. One shall be used to describe the handler’s
view of γ, while the other shall be used to describe the handlee’s view. Building on Professor
Chandler’s analogy, the assertion representing the handler’s view is noted blackboardSt ,
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and the assertion representing the handlee’s view is noted studentView . Here are their
definitions:

blackboardStγ φ ≜ • ex(φ)
γ

studentViewγ φ ≜ ◦ ex(φ)
γ

The logical rules that are induced by this choice of camera and that govern the asser-
tions blackboardSt and studentView appear in Figure 6.8. Rule (IntroduceBlackboard)
allows the introduction of γ. Initially, the state of γ is the empty assignment ∅, there-
fore, the assertions blackboardStγ ∅ and studentViewγ ∅ hold. Rule (CheckBlackboard)
formalizes the claim that both blackboardSt and studentView assert what is the state
of γ. Therefore, if both the assertions blackboardStγ φ and studentViewγ φ

′ hold, then
φ = φ′. Rule (EraseBlackboard) allows one to update the state of γ, provided one has
the possession of both the assertions blackboardSt and studentView .

The remaining ingredient to state the specification of interp is the definition of the
protocol by which interp abides. Recall that interp performs effects to look up the
assignment of literals in the formula it must interpret. During such lookup requests, the
handler might update this assignment, and, consequently, might update the state of γ.
Therefore, it seems natural to propose the following protocol:

Definition 6.7 (Protocol Lookup) The protocol Lookup is defined as follows:

Lookup ≜
2 ! i φ (i) {studentViewγ φ}.

? b (b) {studentViewγ (φ[i 7→ b]) ∗ (φ[i 7→ b])(i) = b}

This protocol states that, when performing effects, interp transfers ownership of the
assertion studentViewγ φ to the handler, and, upon return, the state of γ might have been
updated to φ[i 7→ b]. The assignment φ[i 7→ b] is the extension of φ with the singleton
assignment {i 7→ b}; that is, φ[i 7→ b] ≜ φ ++ {i 7→ b}. So, even though the handler can
choose with which value b to resume the continuation, this choice is limited depending on
whether or not i ∈ dom(φ).

If i ∈ dom(φ), then the two assignments φ and φ[i 7→ b] are equal. The equality (φ[i 7→
b])(i) = b then simplifies to φ(i) = b, thus constraining the choice of b to φ(i). Therefore,
if i ∈ dom(φ), then the handler cannot update the assignment and must resume the
continuation with φ(i).

If i /∈ dom(φ), then the handler can choose any value b, because, in this case, the
equality (φ[i 7→ b])(i) = b trivially holds. Therefore, if i /∈ dom(φ), then the handler can
update the assignment and resume the continuation with any value b (and can do so
several times).

With the introduction of this protocol, the specification of interp can be stated:

Lemma 6.3 (Specification of interp) The function interp admits the following spec-
ification:

∀ p. studentViewγ ∅ −−∗ ewp (interp p) ⟨Lookup⟩{b. ∃φ′. studentViewγ φ
′ ∗ JpKφ′ = b}

Proof Because the function interp is recursive, it is natural to consider a generalization
of its original specification:

∀ p, φ.


studentViewγ φ −−∗
ewp (interp p) ⟨Lookup⟩{b. ∃φ′.
studentViewγ (φ ++φ′) ∗ JpK(φ ++φ′) = b}

(6.1)
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Assertion 6.1 follows by induction on p. Since Lemma 6.3 is a special case of this
assertion, the proof is complete. ■

At first, the specification of interp might seem weak, because it asserts that interp
computes the interpretation of p under some assignment φ′, but it does not tell which
assignment. As we shall see, this specification is sufficiently strong for the purposes
of the proof of satisfy, because, the assertion studentViewγ φ

′ ensures that φ′ agrees
with the state of the handler’s private map. Therefore, even though φ′ is existentially
quantified, the handler knows that φ′ is equal to the current assignment φ, for which the
assertion blackboardStγ φ holds

Assembling the proof. Now, we discuss how the verification of satisfy builds upon
the notions previously introduced.

The execution of satisfy p starts with the allocation of the map m (line 14) initially
representing the empty assignment; that is, the assertion isMapm∅ holds. At the
same time, the ghost cell γ is introduced by application of rule (IntroduceBlackboard).
Therefore, both the assertions blackboardStγ ∅ and studentViewγ ∅ hold at this point in
the code.

The next and final step of satisfy is the handler-monitored execution of interp p in
line 15. To reason about this step, it suffices to apply rule MazeTryWithDeep with the
following instances of the variables Ψ, Ψ′, Φ, and Φ′:

Ψ : Protocol ≜ Lookup

Ψ′ : Protocol ≜ ⊥
Φ : Val→ iProp ≜ λ b. ∃φ′. studentViewγ φ

′ ∗ JpKφ′ = b

Φ′ : Val→ iProp ≜ λ b.


b = satisfiable ∅ p ∗(

if b = false then
blackboardStγ ∅ ∗ studentViewγ ∅ ∗ isMap∅

)
The postcondition Φ′ of the handler reclaims ownership of the assertions blackboardSt ,

studentView , and isMap, if b is false. If b is true, then these assertions can be discarded,
because the algorithm terminates. if b is false, however, the algorithm might not have
explored all the possible assignments, so the search continues.

The application of MazeTryWithDeep with this choice of variables yields two proof
obligations.

The first proof obligation is the specification of interp:

ewp (interp p) ⟨Lookup⟩{b. ∃φ′. studentViewγ φ
′ ∗ JpKφ′ = b}

This proof obligation is easily dispatched by Lemma 6.3 in combination with the
assertion studentViewγ ∅.

The second proof obligation is the following deep-handler judgment:

blackboardStγ ∅ −−∗ isMapm∅ −−∗
deep-handlerM ⟨Lookup⟩ {b. ∃φ′. studentViewγ φ

′ ∗ JpKφ′ = b}
(lines 17 to 29 | fun b -> b)

⟨⊥⟩

 b.
b = satisfiable ∅ p ∗(

if b = false then
blackboardStγ ∅ ∗ studentViewγ ∅ ∗ isMapm∅

) 
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This assertion is fulfilled by the application of the following lemma, which generalizes
this proof obligation:

Lemma 6.4 The following handler judgment holds:

∀φ. blackboardStγ φ −−∗ isMapmφ −−∗
deep-handlerM ⟨Lookup⟩ {b. ∃φ′. studentViewγ φ

′ ∗ JpKφ′ = b}
(lines 17 to 29 | fun b -> b)

⟨⊥⟩

 b.

b = satisfiable φp ∗
if b = false then

blackboardStγ φ ∗
studentViewγ φ ∗
isMapmφ




The statement of this lemma is the specification of the handler. It essentially says
that, regardless of the state of the assignment φ, the handler correctly replies to the
requests of interp. Moreover, the postcondition states that the handler computes the
truth value of satisfiable φp, and that, if this value is false, then it leaves no trace of the
modifications it performed on φ. To meet this postcondition, the handler has access the
ghost cell γ, through the assertion blackboardStγ φ; and to the physical representation
of φ, the value m, through the assertion isMapmφ.

As usual, because the statement of Lemma 6.4 is a deep-handler judgment, the proof
of this statement starts with the application of Löb’s induction principle. Next, the
definition of the judgment (Figure 6.5) is unfolded, revealing two simpler goals: the
specification of the return branch and the specification of the effect branch.

The specification of the return branch corresponds to the following assertion:

∀ b. blackboardStγ φ −−∗ isMapmφ −−∗ (∃φ′. studentViewγ φ
′ ∗ JpKφ′ = b) −−∗

ewp ((fun b -> b) b) ⟨⊥⟩ {b. b = satisfiable φp ∗ (if b = false then

blackboardStγ φ ∗ studentViewγ φ ∗ isMapmφ)}
(6.2)

The proof of Assertion 6.2 consists of two key reasoning steps: (1) the application of
rule (CheckBlackboard), to prove that the existentially quantified assignment φ′ coincides
with φ; and (2) the proof of the equality b = satisfiable pφ. To prove this equality, one
must recall the fact that J_K_ is a partial function. Because JpKφ is defined, every literal
in p must be in dom(φ). Therefore, the value b of JpKφ determines whether satisfiable pφ
holds, because any extension of φ does not have an effect on the interpretation of p.

The specification of the effect branch corresponds to the following assertion (where
line 17 is excluded from the concluding ewp clause so that the variables i and k occur
free in the handler branch and are thus intentionally bound by the leading quantifiers):
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∀ i, k, φ′. blackboardStγ φ −−∗ studentViewγ φ
′ −−∗ isMapmφ −−∗

2∀ b, Ψ′′, Φ′′.
▷ deep-handlerM ⟨Lookup⟩ {b. ∃φ′. studentViewγ φ

′ ∗ JpKφ′ = b}
(lines 17 to 29 | fun b -> b)
⟨Ψ′′⟩ {Φ′′} −−∗

studentViewγ (φ
′[i 7→ b]) −−∗ (φ[i 7→ b])(i) = b −−∗

ewp (k b) ⟨Ψ′′⟩{Φ′′}

 −−∗
ewp (lines 18 to 29) ⟨⊥⟩ {b. b = satisfiable φp ∗ (if b = false then
blackboardStγ φ ∗ studentViewγ φ ∗ isMapmφ)}

(6.3)

This statement is, in fact, a polished version of the specification of the effect branch
from the definition of the handler judgment. In particular, we have exploited that Lookup
is persistently monotonic to simplify the persistent upward closure, and we have un-
folded the definition of Lookup. The assignment φ′, the assertion studentViewγ φ

′, the
equality (φ[i 7→ b])(i) = b, and the specification of k result from these omitted steps of
rewriting.

The proof of Assertion 6.3 begins with application of rule (CheckBlackboard) to
rewrite φ′ as φ.

Because the specification of k is guarded by a persistently modality, it can be applied
to reason about the two invocations of k (lines 22 and 25).

Before each invocation of k with a Boolean b, Specification Insert is exploited
in combination with logical rule (EraseBlackboard) to insert a binding (i, b) in the
assignment φ, so that the assignment is updated both at the program level, the assertion
isMapm (φ[i 7→ b]) holds, and at the logical level, the assertions blackboardStγ (φ[i 7→ b])
and studentViewγ (φ[i 7→ b]) hold.

The protocol and postcondition, Ψ′′ and Φ′′, universally quantified in the specification
of k are respectively specialized with ⊥ and with a version of the effect-branch postcondi-
tion where φ is substituted with φ[i 7→ b], where b is the handler’s reply with which k is
resumed:

Φ′′ : Val→ iProp ≜ λ b′.


b′ = satisfiable (φ[i 7→ b]) p ∗

if b′ = false then
blackboardStγ (φ[i 7→ b]) ∗
studentViewγ (φ[i 7→ b]) ∗
isMap (φ[i 7→ b])


Therefore, the predicate Φ′′ is the postcondition assigned to the expression “k b”. So,

the result of the continuation tells whether satisfiable (φ[i 7→ b]) p holds.
If at least one invocation of k returns true, then the effect branch returns true. To

show that this value satisfies the postcondition of the effect branch, it suffices to show
the following (trivial) logical implication:

(∃ b. satisfiable (φ[i 7→ b]) p) =⇒ satisfiable φp

If none of the two invocations of k returns true, then the effect branch returns false.
The postcondition of the effect branch in this case consists of two goals: (1) the proof



6.3 Case studies 97

that satisfiable φp does not hold, and (2) the proof that the assertions blackboardStγ φ,
studentViewγ φ, and isMapmφ hold. To establish the first goal, it suffices to show the
following (trivial) logical implication:

(∀ b. ¬satisfiable (φ[i 7→ b]) p) =⇒ ¬satisfiable φp

To establish the second goal, it suffices to exploit Specification Delete in combination
with logical rule (EraseBlackboard) to delete i from the assignment φ[i 7→ b] both at the
program level, so that the assertion isMapmφ holds, and at the logical level, so that the
assertions blackboardStγ φ and studentViewγ φ hold.

With the proof of Assertion 6.2 and Assertion 6.3, the proof of Lemma 6.4 is complete,
thus concluding the verification of satisfy.

6.3.2 Reasoning about callcc and throw

The operator callcc is a programming construct introduced by the Scheme programming
language [sch]. It has its roots in Landin’s J operator [Lan98], and is now supported by
languages such as Ruby [Rub] and Racket [Fla21b]. The operational behavior of callcc
and throw can be described in a straightforward manner by stating the two following
reduction rules:

(CallccStep) K[callcc k. e] → K[e{K̃/k}]
(ThrowStep) K[throw K̃ ′ v] → K ′[v]

The expression in the left-hand side denotes the complete program to which these
reduction rules apply, so K denotes the entire evaluation context. The term K̃ denotes
the reification of K as a value. According to rule (CallccStep), the instruction callcc k. e
proceeds in two steps. First, the context K is captured and reified as the value K̃. Then,
this value K̃ is substituted for the binder k in the expression e, which assumes control.
According to rule (ThrowStep), the instruction throw K̃ ′ v replaces the current evaluation
context K with a previously captured one K ′; that is, the current context is erased and
the captured one is installed.

Because callcc captures the entire evaluation context, instead of just a delimited
fragment (as it is the case with effect handlers, for example), callcc and throw are called
undelimited-control operators and continuations captured by callcc are called undelimited
continuations. Moreover, because throw erases the current evaluation context, the captured
continuation K̃ is non-composable [FYFF07]. Continuations captured by effect handlers,
in contrast, are composable: when a continuation is invoked, K[(cont K ′) v], the captured
context K ′ composes with the current context K: the program K[(cont K ′) v] reduces
to K[K ′[v]].

It has been extensively argued that undelimited-control operators and non-composable
continuations are not good programming abstractions. Indeed, Kiselyov builds a strong
argument against the adoption of callcc [Kis12a]. He attacks this programming con-
struct under multiple axes: safety, efficiency, reasoning principles, expressiveness, and
practicability. From the safety axis, he argues that undelimited continuations lead to
memory leaks, because, in most applications, only a fragment of the evaluation context
is needed, so capturing the whole evaluation context keeps more memory live than it is
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necessary. From the expressiveness axis, undelimited continuations can be seen as being
delimited by a fictional topmost frame enclosing the complete program. Undelimited
continuations can thus be emulated by delimited continuations. Moreover, even though
the converse also is true (Filinski [Fil94] shows that “callcc and a single mutable cell”
can implement the delimited-control operators shift and reset), Kiselyov argues that
this encoding is fragile: it works under the strong assumption that shift and reset are
the only source of control effects. Even the use of exceptions breaks this assumption.

In this case study, we wish to investigate whether Maze can be applied to reason about
callcc and throw. We show that, assuming programs execute under a distinguished
toplevel frame delimiting the evaluation context, it is possible to implement callcc and
throw in MazeLang, using effect handlers and multi-shot continuations. We then show
that it is indeed possible to ascribe Maze reasoning rules to these constructs. One can
thus apply all of Maze reasoning principles to callcc and throw. Surprisingly, this shows
that callcc and throw are compatible with context-local reasoning : it is sound to apply
the bind rule in the presence of these constructs. The main limitation to reasoning is the
unsoundness of the frame and monotonicity rules, a limitation inherited from Maze due
to multi-shot continuations. This seems to contradict Timany and Birkedal [TB19], who
claim that the bind rule is unsound in the presence of callcc. We compare our work to
Timany and Birkedal’s at the end of this case study, where we explain that there is no
contradiction.

Programming with callcc and throw

Before we present the implementation of callcc and throw in MazeLang and their
reasoning rules, let us build some experience of programming with these constructs.
Leroy [Ler18] makes the suggestive claim that “callcc is the goto of lambda calculus”.
Madore [Mad02] makes a similar claim: he suggests that callcc is a “dynamic goto”.
These claims rely on the intuition that an evaluation context K[•] can be seen as a pointer
to the position of the hole •. From this perspective, the operation callcc k. e allows
the expression e to gain access to its own position via the binder k, and the operation
throw k x allows a program to return to the position denoted by k.

A typical application of callcc building on this intuition is to simulate exceptions.
When searching for the first element x in a data structure that satisfies a predicate p, for
example, one could use callcc to stop the search as soon as this element has been found.
The following example implements this strategy:

let list_find xs p = callcc k.
list_iter xs (fun x -> if p x then throw k (Some x)); None

The function list_find uses callcc to record its call site, that is, the position where it
has been called. Then, it begins the search for an element in xs that satisfies the predicate p.
It performs this search by calling the higher-order iteration method list_iter (Chapter 3)
with a function that tests whether a given element x satisfies p. In the affirmative case,
the operation throw k x is performed, thus stopping the iteration and forcing list_find
to immediately return this element.

A more advanced application of callcc and throw than the one previously discussed
is to implement the conversion of eager iteration methods into lazy sequences; that is, to
implement the function invert from Chapter 1:
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let invertcc iter = fun () -> callcc kc.
let r = ref kc in
let yield x =

callcc kp. throw !r (cons (x, fun () ->
callcc kc. r := kc; throw kp ()))

in
iter yield; throw !r nil

The main novelty of this example is the introduction of a reference r to store continuations.
This is a typical idiom when programming with callcc and throw, because throw discards
the current evaluation context K. So, to avoid the complete loss of K, it is natural to
store the reification of K in a reference, before performing a throw operation.

To understand the implementation of invertcc, it is useful to think in terms of two
communicating agents: the consumer and the producer.

The consumer calls invertcc: it is a context expecting a sequence head ; that is, either
a Nil value, or a Cons pair containing an element x and a sequence of the remaining
elements. At the beginning of invertcc’s execution, a callcc instruction is used to
obtain the position of the consumer kc, with which the reference r is initialized.

The producer represents the function invertcc. It calls iter with a function yield that
jumps back to the consumer every time yield stumbles upon a new element x. However,
just before performing this jump, yield uses callcc to obtain its own position kp. The
second component of the Cons pair sent to the consumer is a closure representing the
remaining elements of the sequence. This closure is thus meant to be called by the
consumer when the consumer demands a new element. This closure uses the position kp
to resume the iteration from where it stopped. Moreover, it also uses callcc to obtain
the position kc from which it was called by the consumer. It then writes kc to r, so the
producer knows where to jump the next time the producer stumbles upon a new element.

Finally, when the iteration terminates, the producer performs a final jump to the
consumer with the value Nil to indicate that all elements have been produced.

Note. The function invertcc has been verified. Its verification is not presented in
this thesis, but it can be found in the Coq formalization: https://gitlab.inria.fr/
cambium/hazel/-/blob/master/theories/case_studies/control_inversion.v.

Implementation

Figure 6.9 shows how callcc and throw can be macro-expressed as effect-performing
MazeLang programs. Their interpretation is given by the handler toplevel, which is
also defined in this figure. Supposedly, this handler corresponds to the topmost frame
in the execution stack. Under this assumption, it is easy to check that this encoding of
callcc and throw respects the reduction rules (CallccStep) and (ThrowStep); that is,
for a suitable definition of K̃, the implementations of callcc and throw that appear in
Figure 6.9 satisfy the following reduction rules:

toplevelK[callcc k. e] →∗ toplevelK[e{K̃/k}]
toplevelK[throw K̃ ′ v] →∗ toplevelK ′[v]

https://gitlab.inria.fr/cambium/hazel/-/blob/master/theories/case_studies/control_inversion.v
https://gitlab.inria.fr/cambium/hazel/-/blob/master/theories/case_studies/control_inversion.v
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1 callcc k. e ≜ (do (inj1 (fun k -> e))) ()
2 throw k’ x ≜ do (inj2 (k’, x))
3 toplevel e ≜
4 deep-try e with
5 (* Effect branch. *)
6 ( fun arg k ->
7 match arg with
8 ( fun (* Callcc. *) t ->
9 k (fun _ -> t k)

10 | fun (* Throw. *) (k’, x) ->
11 k’ (fun _ -> x)
12 )
13 (* Return branch. *)
14 | fun y -> y
15 )

Figure 6.9: Implementation of callcc and throw in MazeLang.

Indeed, the preceding rules are easily derivable with the following definition of K̃:

K̃ ≜ cont (toplevelK[ • ()]) (6.4)

Let us explain why this encoding works. Recall that, when a program performs an
effect, the evaluation context up to the innermost enclosing handler is (1) reified and (2)
replaced by the effect branch of the handler:

try (N [do v]) with (h | r) →∗ h v k

When the operation callcc k. e is performed, on the other hand, the enclosing evaluation
context is only reified, but not replaced: control is kept by the expression e. Therefore, the
idea is to encode callcc as an effect whose handler immediately invokes the continuation
to which it gains access. So, even though the context surrounding callcc is replaced by
callcc’s handler, this context is immediately restored.

Ideally, callcc’s handler should resume the captured continuation k with the expres-
sion e{k/k′}. However, continuations can be resumed only with values. The solution is
thus to resume k with the thunk λ_. (λk′. e) k, which must be forced at the effect-call site.
Therefore, the complete encoding of callcc k′. e is a MazeLang program that proceeds
as follows: first, it performs the effect do (inj1 (λk′. e)), then, after it receives a thunk f ,
it immediately forces f through its application to ().

The left sum in the encoding of callcc is needed to let the handler distinguish
between callcc and throw, which is also encoded as an effect. Indeed, throw k′ x is
simply implemented as the instruction do (inj2 (k′, x)). The handler of this effect is
equally simple: all it does is to resume k′ with the thunk λ_. x. In particular, the
captured continuation k is discarded: the context surrounding the expression throw k′ x
is thus effectively replaced with the one denoted by k′.
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isCont : Val→ (Val→ iProp)→ iProp CT : Protocol

isContPersistent
persistent(isCont kΦ)

isContWeakening
2∀w. Φ′(w) −−∗ Φ(w)

isCont kΦ −−∗ isCont kΦ′

MazeToplevel
ewp e ⟨CT ⟩{_. True}

ewp (toplevel e) ⟨⊥⟩{_. True}

MazeCallcc
∀ k. isCont kΦ −−∗ ewp e ⟨CT ⟩{Φ}

ewp (callcc k. e) ⟨CT ⟩{Φ}

MazeThrow
isCont kΦ Φ(x)

ewp (throw k x) ⟨CT ⟩{_. False}

Figure 6.10: Reasoning rules for callcc, throw, and toplevel.

Reasoning rules

The Maze reasoning rules for callcc and throw appear in Figure 6.10. They are stated in
terms of an abstract predicate isCont and an abstract protocol CT , for callcc and throw.

The protocol CT describes the control effects that arise from the encoding of callcc
and throw. This protocol is introduced by the application of rule MazeToplevel, which
expresses the idea that, if the expression e is enclosed by a toplevel instruction, then e
can exploit the instructions callcc and throw. This rule also states that the complete
program toplevel e abides by the protocol ⊥; that is, this program performs no observable
effect.

The binary predicate isCont relates a value k, representing an evaluation context K,
to a predicate Φ. Intuitively, if the assertion isCont kΦ holds, then, for every value x
satisfying Φ, the context K can be filled with x. Such assertions are introduced by appli-
cations of rule MazeCallcc, which states that, to reason about the operation callcc k. e
in a context that expects a value satisfying Φ, it suffices to reason about e and prove
that e produces a value satisfying Φ under the assumption that isCont kΦ holds. In the
verification of e, one can exploit the assertion isCont kΦ multiple times, because isCont
is persistent (rule isContPersistent). Moreover, one can weaken the assertion isCont kΦ
by replacing Φ with a stronger predicate Φ′ (rule isContWeakening).

Rule MazeThrow states that, to perform the operation throw k x, the value k must
have been introduced by callcc, that is, the assertion isCont kΦ must hold for some Φ;
and x must satisfy Φ. The postcondition of throw k x is the empty predicate, λ_. False.
This predicate means that throw does not produce a return value, and can thus be used
in any context. This logical description is in agreement with the dynamic behavior of
throw, which does not return a value, but rather escapes its own evaluation context by
resuming k.

The definition of the predicate isCont and of the protocol CT appears in Figure 6.11.
The definition of isCont kΦ captures the idea that k is the reification of some evaluation
context K, therefore k must assume the form K̃ = cont (toplevelK[ • ()]) (Equa-
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Definition of the predicate isCont .

isCont kΦ ≜ 2∀ f. ewp (f ()) ⟨⊥⟩{Φ} −−∗ ewp (k f) ⟨⊥⟩{_. True}

Definition of the protocol CT .

CT ≜ Callcc + Throw

Callcc ≜
2 ! tΦ (inj1 t) {∀ k. isCont kΦ −−∗ ▷ ewp (t k) ⟨CT ⟩{Φ}}.

? f (f) {▷ ewp (f ()) ⟨CT ⟩{Φ}}

Throw ≜ 2 ! k′ xΦ (inj2 (k
′, x)) {isCont k′Φ ∗ Φ(x)}. ? y (y) {False}

Figure 6.11: Definition of isCont and CT .

tion 6.4). More precisely, the assertion isCont kΦ states that k expects a thunk f , which,
when applied to (), produces a value that satisfies Φ. Moreover, the expression k f abides
by the empty protocol and the postcondition λ_. True.

The protocol CT is defined as the sum of two protocols: the protocol Callcc, which
describes the effect performed by callcc; and Throw , which describes the effect performed
by throw. The protocol Throw is a persistent send-receive protocol that simply rephrases
rule MazeThrow. The main difference between the definition of the protocol Callcc and
the statement of rule MazeCallcc is the presence of later modalities. These modalities
are necessary to guard the occurrences of the protocol CT , which make Callcc a recursive
definition.

Comparison with Delbianco and Nanevski’s HTTcc. We note that the introduction
of reasoning rules for callcc and throw in Separation Logic is not novel. As discussed in
Chapter 2, Delbianco and Nanevski [DN13] devise HTTcc, an extension of HTT [NAMB07,
NVB10] with support for callcc and abort (a construct as expressive as throw).

Recall that HTT is a program logic exploiting Coq’s rich dependent type theory to
introduce the type of programs that satisfy a given specification. Reasoning rules in HTT
are thus stated as typing rules. The reasoning rule for callcc could be translated to
Maze as follows:

HTTccCallcc
∀ k. isCont kΦ −−∗ ewp e ⟨CT ⟩{Φ′}

ewp (callcc k. e) ⟨CT ⟩{y. Φ(y) ∨ Φ′(y)}

Rule HTTccCallcc expresses the idea that the result of callcc k. e comes either
from the normal execution of e or from the execution of an instruction throw k x. It
differs from rule MazeCallcc in that the postcondition of callcc k. e is stated as a
disjunction rather than an arbitrary predicate.

Rule HTTccCallcc is derivable in Maze. Indeed, it suffices to apply rule Maze-
Callcc followed by (1) the application of rule isContWeakening, to pass from the
assertion isCont k (λ y. Φ(y) ∨ Φ′(y)) to isCont kΦ; (2) the application of rule Maze-
Monotonicity, to pass from a goal of the form ewp e ⟨CT ⟩{y. Φ(y) ∨ Φ′(y)} to a goal
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of the form ewp e ⟨CT ⟩{Φ′}; and (3) the application of the premise ∀ k. isCont kΦ −−∗
ewp e ⟨CT ⟩{Φ′}, to complete the proof.

Rule MazeCallcc is derivable from rule HTTccCallcc. Indeed, it suffices to apply
rule MazeMonotonicity, to pass from a goal of the form ewp e ⟨CT ⟩{Φ} to a goal of
the form ewp e ⟨CT ⟩{y. Φ(y) ∨ Φ(y)}, and then apply rule HTTccCallcc to complete
the proof.

One of the examples studied by Delbianco and Nanevski is the function inc3, which
uses callcc to twist the control flow in such a way that a reference x, passed as an
argument, is incremented three times, even though only two increment operations are
visible in inc3’s source code. Here is the translation of inc3 to MazeLang:

let inc3 x =
let c = callcc k.

fun _ -> x := !x + 1; throw k (fun _ -> ())
in
x := !x + 1; c()

This function provides an interesting opportunity to exercise Maze’s reasoning rules.
Indeed, the derivation of the following statement is straightforward:

Statement 6.2 The function inc3 admits the following specification:

∀R, x, n. R −−∗ x 7→ n −−∗ ewp (inc3 x) ⟨CT ⟩{_. R ∗ x 7→ (n+ 3)}

This specification is adapted from Delbianco and Nanevski’s version written in HTTcc.
Both versions employ a similar trick, which is to compensate for the inadmissibility of
the frame rule by universally quantifying over a residual heap, here represented by the
proposition R.

As written in Section 2.4 of Chapter 2, when we compared the Hazel logic to HTTcc,
one of the limitations of HTTcc is the inability to reason about dynamically allocated
higher-order store; that is, dynamically allocation of values such as first-class functions
or first-class continuations. Like Hazel, the Maze logic is built on top of Iris, which has
support for reasoning about dynamically allocated higher-order store, therefore Maze
does not have this limitation. Moreover, Maze inherits all the Iris verification machinery,
such as higher-order ghost state and invariants.

Comparison with Timany and Birkedal’s work. To conclude this case study, let
us clarify a seeming contradiction. Timany and Birkedal [TB19] claim that the bind rule
is inadmissible in the presence of callcc and throw. This claim seems to contradict
the results of this case study, which introduces reasoning rules for callcc and throw in
Maze, a logic that enjoys the bind rule (MazeBind). However, there is no contradiction:
Timany and Birkedal’s claim applies to the usual notion of weakest precondition; that
is, a predicate wp for which the assertion wp e {Φ} has the usual meaning that e
either diverges or evaluates to a value that satisfies the postcondition Φ. Our notion
of weakest precondition, ewp, does not conform to this reading. For instance, ewp does
not validate the following reasoning rules from [TB19], which rephrase the operational
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behavior of callcc and throw:

CallccWP
▷wp (e{K̃/k}) {Φ}

wp (K[callcc k. e]) {Φ}

ThrowWP
▷wp (K ′[v]) {Φ}

wp (K[throw K̃ ′ v]) {Φ}

If one replaces the weakest precondition wp _ {_} with ewp _ ⟨CT ⟩{_}, then the
resulting logic would be unsound. Indeed, one could easily apply the resulting logic to
derive a specification stating that the program inc3 x increments the reference x twice.

The informal reason why Maze does not allow the operational reasoning about callcc
and throw permitted by the rules CallccWP and ThrowWP is that these constructs
are implemented as effect-performing MazeLang programs. The only way, in Maze, to
reason about an effect isolated from its handler is by means of the protocol currently
installed, which, in this case, is CT . Therefore, the only way to reason about callcc
and throw in terms of the predicate ewp _ ⟨CT ⟩{_} is by means of the rules MazeCallcc
and MazeThrow.

We believe that rules MazeCallcc and MazeThrow endorse more abstract reasoning
principles than those permitted by rules CallccWP and ThrowWP. For instance,
whereas CallccWP compels one to think about the captured continuation k as the
reification of some evaluation context, rule MazeCallcc invites one to think about k as a
position to which a program can jump with a value, provided that this value satisfies the
predicate Φ specified by the assertion isCont kΦ. Moreover, the admissibility of the bind
rule in Maze allows context-local reasoning in the presence of non-local control flow.



Chapter 7

A Type System for Effect
Handlers with Dynamic Labels

In this chapter, we introduce Tes, a type system for a language with support for effect
handlers, multiple named effects, and dynamic allocation of effect labels. As we shall
see, this construct allows several programming styles, including but not restricted to
lexically scoped handlers [ZM19, BPPS20], where the generation of a new name and the
installation of a handler are tied together.

The main achievement of Tes is a set of simple typing and subtyping rules. Indeed,
we believe that Tes is the first system, not restricted to lexically scoped handlers, that
allows both the extension and the permutation of rows. This is possible due to a novel
reading of a row, which is interpreted not only as a permission to perform effects with
certain names and types but also as a requirement that these names be pairwise distinct.

To prove that Tes is sound, we follow the semantic approach: we present the inter-
pretation of Tes into a novel Hazel-inspired Iris-embedded Separation Logic for effect
handlers and named effects. We believe that we are the first authors to prove effect safety
by means of a semantic interpretation in Iris. This chapter adapts the contents of a draft
paper [dVP22a]. The results of this chapter are formalized in Coq.

7.1 Introduction

A type system consists of a set of types and a set of typing rules. A type is a concise
description of a set of values. A typing judgment relates a program fragment to a type
representing the set of values to which the result of this program belongs. A program
related to some type by a typing judgment is a well-typed program. A typing rule
establishes that a program is well-typed assuming that its components are well-typed;
that is, from the assumption that certain program fragments are well-typed, a typing rule
establishes that their composition by means of one of the constructs of the language is
equally well-typed.

Type systems are thus similar to program logics in the sense that they allow the
programmer to think about programs abstractly (in terms of types) and modularly (by
means of typing rules).

The main practical purpose of a type system is to ensure that well-typed programs
enjoy a set of guarantees. This set of guarantees depends on the type system, but one of
the most common guarantees is type safety : every operation performed by a program has
a well-defined meaning; in particular, every function call specifies a well-defined function
and has the correct number of arguments. In the presence of effect handlers, a commonly
desired guarantee is effect safety : that every effect performed by a program is handled.
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In this chapter, we introduce Tes, a type system that ensures both type and effect
safety. Although this goal has already been achieved by many authors [BP14, HL16,
BPPS18, BPPS19, BPPS20, ZM19], we believe that Tes is the first type system that (1)
attains type and effect safety for a programming language with dynamic allocation of effect
labels; (2) has support for an expressive set of types, which includes effect-polymorphic
types; and (3) has a simple set of typing rules, which includes the extension and the
permutation of rows.

Let us further clarify the contributions of Tes by separating the discussion into two
topics. In the first topic, Operational semantics, we explain what is dynamic allocation of
effect labels and why this is a desired programming feature. In the second topic, Static
semantics, we explain the concepts of effect polymorphism, rows, extension of rows, and
permutation of rows; and we explain why these are desired features of a type system. We
then conclude the discussion in a third and final subsection, Overview, where we recast
the contributions of Tes and give an overview of this chapter.

7.1.1 Operational semantics

Multiple named effects. So far, both languages we have studied (HH and MazeLang)
have support for unnamed effects: a handler installed over an expression e intercepts all
the effects performed by e. However, a program often performs effects of different nature,
such as I/O instructions and mutable state. Therefore, it is natural to extend the language
with the ability to specify the effects that a handler can intercept. Effect names offer this
additional expressive power. More precisely, we would like to introduce the instruction
perform s v to perform an effect identified by the effect name s and carrying payload v.
Accordingly, we would like an effect handler to indicate which effects it wishes to handle,
based on the name s. Thus, in the new effect-handling construct handle e with (s : h | r),
we would like the effect branch h to be invoked when the expression e performs an effect
named s, and we would like the return branch r to be invoked if e terminates normally.

Dynamic allocation of effect labels. Dynamic allocation of effect labels is the ability
to introduce fresh effect labels. We would like to the language to have a construct of the
form effect s in e, which binds the effect name s to a freshly generated effect label. This
distinction between effect names and effect labels is similar to the distinction between
variables and memory locations that is traditionally used in the operational semantics of
mutable references [Pie02]. An argument in favor of this feature is that dynamic allocation
of effect labels can serve as a tool to defend against accidental handling [ZM19]. It is also
worth noting that dynamic allocation of exception labels has existed for a long time in
Standard ML [MTHM97] and in OCaml [LDF+19].

Accidental handling. Accidental handling is an informal concept that can be described
roughly as follows: accidental handling occurs when an effect handler intercepts an effect
that it was not meant to handle. For example, consider the function bad_counter, defined
as follows:

bad_counterff f ≜
let g = λx. perform tick (); f x in
(handle (ff g) with (tick : λ_. λk. λn. k () (n + 1) | λy. λn. (y, n))) 0
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This example and most of the following ones in this section are written in TesLang, a
calculus whose syntax and semantics are introduced in Section 7.2.

The function bad_counter uses an effect named tick to implement a memory cell in
state-passing style. The intended result of the application bad_counter ff is a version
of the second-order function ff that counts the number of times ff calls its argument.
However, because of accidental handling, the function bad_counter may not behave as
intended. For example, consider the following program:

bad_counter (bad_counter (λf. f())) (λ_. ())

The expected result of this program is (((), 1), 1), because the function (λf. f())
calls its argument once, and its wrapped version, produced by the inner application
of bad_counter, should preserve this property. However, the actual result is the
value (((), 2), 0). To understand why this value is produced, let us draw a loose picture
of the runtime behavior of this program. Each application of bad_counter contributes
to one tick handler and one tick effect. Because both handlers specify the same effect
name tick , one of them intercepts the two tick effects. The handler that came from the
inner application of bad_counter is the one that appears the most deeply nested in the
evaluation stack, so this is the handler that intercepts both tick effects, thus leading to
the result value.

To avoid accidental handling, precautions can be taken at several levels: the syntax and
dynamic semantics of the programming language can be altered so as to make programmer
mistakes less likely; and/or a static type discipline can be imposed. At the language design
level, the literature describes two mechanisms that are intended to help protect against
accidental handling: (1) lexically scoped handlers [BS17, BPPS20, BSO20a] and (2) effect
coercions [BPPS18].

Lexically scoped handlers. The characteristic intended feature of a “ lexically scoped
handler ” is the fact that one can statically tell which handler is invoked when an effect is
performed [SBMO22]. This can be achieved by installing a handler for a freshly generated
effect label, that is, a label generated immediately before the handler is installed. In
other words, lexically scoped handlers can be simulated using ordinary effect handlers
and dynamic generation of effect labels. The encoding is as follows:

lex-handle e with (h | r) ≜
effect s in
handle (e (λx. perform s x)) with (s : h | r)

(7.1)

This code first generates a fresh effect label and binds the name s to this label. Then,
it installs a handler, which monitors the application of the expression e to the func-
tion λx. perform s x.

Coming back to the example of the function bad_counter, one can employ a lexically
scoped handler to correct the code as follows:

counterff f ≜
lex-handle (λtick . ff (λx. tick (); f x)) with
(λ_ k. λn. k () (n + 1) | λy. λn. (y, n)) 0
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The variable tick now stands for a function that performs an effect named s. Every
time counter is invoked, a fresh label ℓ is allocated, and the local name s is bound to
this label. Therefore, the program

counter (counter (λf. f())) (λ_. ())

reduces to the value (((), 1), 1), as desired, because the two applications of counter install
two handlers for two distinct dynamic labels.

Effect coercions. An effect coercion is an operation that modifies the manner in which
a client that performs an effect is matched with one of the enclosing handlers.

Perhaps the most illustrative example is that of the lift coercion [BPPS18, BPPS19].
Usually, performing an effect named s transfers control to the innermost enclosing handler
that selects the name s. In the presence of a lift coercion, however, control is transferred
instead to the second closest handler. To this end, the perform instruction must be
wrapped in a lift coercion: lift s (perform s v). Here is how one could employ such a
coercion to correct the accidental-handling behavior from the function bad_counter:

lift_counterff f ≜
let g = λx. perform tick (); lift tick (f x) in
(handle (ff g) with (tick : λ_. λk. λn. k () (n + 1) | λy. λn. (y, n))) 0

As desired, the program

lift_counter (lift_counter (λf. f())) (λ_. ())

reduces to the value (((), 1), 1), because among the two tick effects, one tick effect is
intercepted by the innermost handler, whereas the other is intercepted by the outermost
handler thanks to a lift coercion.

Between these two mechanisms of protection against accidental handling, we argue in
favor of lexically scoped handlers. However, we do not defend lexically scoped handlers
as the only effect-handling construct of the language. We rather advocate for ordinary
handlers and the dynamic allocation of effect labels, which, as we have seen, are sufficient
to express lexically scoped handlers. In sum, we argue against restricting the programming
language to lexically scoped handlers only, and against effect coercions.

Our argument against effect coercions is unwarranted complexity. Effect coercions
complicate the dynamic semantics of the language, and are potentially difficult to explain
to programmers. Dynamic allocation of effect labels allows avoiding accidental handling,
while preserving a simple, standard dynamic semantics.

Argument against the restriction to lexically scoped handlers. Our argument
against a restriction to lexically scoped handlers is threefold:

1. Unusual style. Programming languages with support for exceptions, such as
OCaml, Python, and Java, propose a set of globally defined exception names,
to which every program has access. Programmers agree to throw each of these
exceptions in specific situations – for example, when the task of searching for an
element terminates unsuccessfully, or when an arithmetic computation causes a



7.1 Introduction 109

division by zero. In a language with support for effect handlers, one can imagine
a similar convention. Every program can have access to a set of globally defined
effect names, and programmers can agree to perform each of these effects in specific
situations. For example, when programming with coroutines [dMI09], programmers
might agree to perform a globally defined yield effect to produce elements. For
example, the following filter function iterates over a list xs and “yields” the
elements that satisfy a certain predicate f . By convention, an element is “yielded”
by performing a yield effect.

filter xs f ≜ iter xs (λx. if f x then perform yield x) (7.2)

We assume that iter is a higher-order iteration combinator, which applies a function
in succession to every element of a list. Another function, reassemble, constructs
a list of the elements yielded by a function g:

reassemble g ≜ handle (g()) with (yield : λx k. x :: k() | λ_. [])

Filtering a list to obtain a new list is just a matter of combining the previous two
functions:

reassemble (λ_. filter xs f) (7.3)

With lexically scoped handlers, one can write similar programs, albeit in an unusual
style. Since an effect label can be allocated only when the handler is installed, a
client has to take an extra parameter representing the function that performs this
effect. For example, here is how one could define filter in a language that is
restricted to lexically scoped handlers:

filter′ xs f yield ≜ iter xs (λx. if f x then yield x)

And here is how one could define reassemble using a lexically scoped handler:

reassemble′ g ≜
lex-handle g with (λx k. x :: k () | λ_. [])

This style becomes more cumbersome when a program performs multiple named
effects: a client needs to take one extra parameter for each effect name.

An argument in favor of this style would be that reassemble′ protects against
accidental handling. Indeed, consider the following program:

reassemble′ (filter′ xs f) (7.4)

Because reassemble′ installs a lexically scoped handler, we are assured that this
handler will not intercept the effects that f might perform. On the other hand,
the handler installed by reassemble (Program 7.3) might accidentally intercept a
yield effect that f might perform. Our rebuttal is that, to protect against accidental
handling in Program 7.3, one can specify, as an assumption to the application
of filter, that f must not perform yield effects. As we shall see in Section 7.3, the
programmer can express such a specification using the type system introduced in
this chapter. Our system ensures that, in every application of filter, the function
f does not perform yield effects.
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2. Not backwards compatible. A restriction to lexically scoped handlers runs
contrary to the design choices made in OCaml 5 [SDW+21], which does not impose
such a restriction. Indeed, OCaml supports unrestricted dynamic allocation of effect
labels.

3. Theoretically unsatisfying. Because a lexically scoped handler is simply the
combination of the allocation of a fresh label and the installation of a handler for
this label, it is theoretically unsatisfying to have a language that supports only
lexically scoped handlers. With unrestricted dynamic allocation of effect labels, the
programmer can choose between allocating effect labels globally (at the top level of
the program) or locally.

7.1.2 Static semantics

Having decided in which semantic features we are interested, namely multiple named
effects and dynamic allocation of effect labels, we can now address the question of designing
a type system. Let us discuss what type system features and what static guarantees are
desired.

Desired features.

1. Annotated arrows. In addition to an argument type τ and a return type κ, an
annotated arrow τ

ρ−→ κ includes a row ρ [Ré89, Lei14, HL16], which specifies the
effects that a function might perform. Annotated arrows are a desired feature,
because it is essentially impossible to achieve effect safety without them.

2. Effect polymorphism. Effect polymorphism is the possibility to reuse a program
component in several different contexts that are prepared to perform or handle differ-
ent effects. A typical example is that of the higher-order iteration combinator iter,
which applies its argument f to the elements of a collection. Effect polymorphism
is a desired feature, because we would like to express that iter is insensitive to the
effects f might perform. More precisely, if the elements have type α, then we would
like iter to have the type ∀θ. (τ θ−→ ()) θ−→ (), which is universally quantified over
the effect of the function f .

3. Permutation and extension of rows. Permutation and extension of rows are
subtyping rules. A subtyping rule defines a subtyping relation: intuitively, a type τ
is a subtype of κ, if terms of type τ can be used in a context expecting terms of
type κ. Therefore, subtyping rules add flexibility to the type system; the laxer
the subtyping relation is, the greater the set of well-typed programs is. In this
chapter, we wish to study the subtyping relation on annotated arrow types. We
argue that two desirable subtyping rules are the permutation and the extension of
rows; that is, a type τ

ρ−→ κ should be a subtype of τ ρ′−→ κ, if ρ specifies less effects
than ρ′ does, regardless of the order of the effects in each of these rows. Being
insensitive to the order of the effects in a row ρ essentially means that, when writing
a function f of type τ

ρ−→ κ, the programmer needs not to reason about the order
in which the effect handlers appear in the stack during the evaluation of f . The
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permutation of rows is thus an important rule that alleviates cognitive load on the
programmer by abstracting the order of handlers. Admitting the type τ

ρ−→ κ to
be a subtype of τ ρ′−→ κ, if ρ specifies less effects than ρ′, essentially means that f
can be used in a context with more handlers than f “needs”. This subtyping rule
is especially important in the presence of effect-polymorphic types. Indeed, it is
often the case that one wishes to call an effect-polymorphic function of type τ

θ−→ κ
under a handler for a fresh effect name s. This is the case of the function counter
(Eq. 7.1.1), whose type-checking we shall present in Section 7.3. In these cases, the

type τ
θ−→ κ must be a subtype of τ

(s :_)· θ−−−−−→ κ, where the row (s :_) · θ specifies
the effect s in addition to those specified by θ.

Desired static guarantees. An important desired static guarantee is effect safety:
that, during the execution of a complete (closed) program, no effect is left unhandled. In
other words, performing an effect named s outside of the scope of a handler for this name
must be statically forbidden.

The “absence of accidental handling”, sometimes also referred to as “abstraction safety”,
might also be considered a desirable property. However, this property is only loosely
defined in the literature. Zhang and Myers [ZM19] suggests that it is connected in some
sense with parametricity of effect polymorphism. However, parametricity itself is loosely
defined. Parametricity requires a universal quantifier in the syntax to be interpreted by a
meta-level universal quantification over some universe of semantic types. However, which
universe of semantic types is chosen matters, and this creates a tension between conflicting
goals: while a larger universe allows establishing more contextual equivalence laws, a
smaller universe allows type-checking more programming language constructs, such as
dynamic-wind [FYFF07]. We continue this discussion later in Section 7.5. For now, let
us state that “absence of accidental handling” is not a well-defined goal. The existence
of a sound semantic interpretation of types, and the ability to exploit parametricity to
establish strong program equivalence laws, are more clearly defined goals. In this chapter,
we define a sound semantic model for Tes, but leave the study of equivalence laws to
future work.

7.1.3 Overview

The main contribution of this chapter is the introduction of Tes, a type system for a
language with support for effect handlers, multiple named effects, dynamic allocation of
effect labels, and general references. The type system supports effect polymorphism and
ensures the absence of unhandled effects. One key novelty of Tes is the meaning assigned
to arrow types. An arrow type implicitly expresses the requirement that the effect labels
in its row are pairwise distinct. In Section 7.3, we show how to exploit this feature in a
number of examples. Moreover, Tes offers relaxed subsumption rules that allow, among
other properties, the extension and permutation of rows. With simple yet flexible typing
rules, Tes is the first system, not restricted to lexically scoped handlers, that accepts the
program counter (Eq. 7.1.1). We give a more detailed comparison of Tes with previous
work in Section 7.5. As a second contribution, in Section 7.4, we introduce a novel
Separation Logic for reasoning about multiple named effects and multi-shot continuations.
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Variables and effect identifiers

Var ∋ f, x, s EffId ∋ n ::= s (∈ Var) | ℓ (∈ Loc)

Values, expressions, and operations

Op ∋ ⊙ ::= + | not | and | or | ==
Val ∋ v ::= () | b (∈ Bool) | i (∈ Int) | ℓ (∈ Loc) | ⊙ (∈ Op)

| rec f x. e | (v, v) | inji v | v :: v | [] | cont K
Expr ∋ e ::= v | x | e e | e :: e | (e, e) | proji e | inji e

| match e with (v | v) | if e then e else e | ref e | ! e | e := e
| effect s in e | perform n e | eff (ℓ, v) K | handle e with (n : v | v)

Evaluation contexts

Ectx ∋ K ::= • | e K | K v | K :: v | e ::K | (e,K) | (K, v) | proji K | inji K
| match K with (v | v) | if K then e else e
| ref K | !K | e := K | K := v
| perform ℓ K | handle K with (ℓ : v | v)

Notation

Figure 7.1: Syntax of TesLang.

We use this logic as to offer a semantic interpretation of Tes and to prove that Tes ensures
effect safety. As a third contribution, we study the combination of effects, mutable state,
and polymorphism, and point out that this combination (if unrestricted) is unsound,
because the universal quantifier does not commute with the update modality. In Tes,
typing judgments carry purity attributes, which indicate whether a program interacts with
the store. A program that is considered pure by the type system satisfies a specification
that does not involve an update modality; therefore, its type can be generalized.

7.2 Syntax and semantics of TesLang

We introduce TesLang, a calculus that formalizes the semantics of dynamic allocation
of effect labels. Moreover, this calculus includes mutable state, effect handlers, multiple
named effects, and multi-shot continuations. Even though one-shot continuations are
more principled programming constructs than multi-shot continuations (see Paragraph 2.1
of Chapter 2), we choose to support multi-shot continuations, because, to statically rule
out multiple calls to a continuation, a substructural type system [Wal05] would be needed.
We leave the extension of Tes to ensure that continuations abide by a one-shot discipline
to future work.
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Reduction relation e / σ → e / σ

EffectStep
ℓ /∈ dom(σ)

effect s in e / σ → e{ℓ/s} / σ[ℓ 7→ ()]

PerformStep
perform ℓ v / σ → eff (ℓ, v) • / σ

GobbleUpAppLCtxStep
(eff (ℓ, v1) K) v2 / σ →
eff (ℓ, v1) (K v2) / σ

GobbleUpAppRCtxStep
e1 (eff (ℓ, v2) K) / σ →
eff (ℓ, v2) (e1 K) / σ

GobbleUpHandleCtxStep
ℓ1 ̸= ℓ2

handle (eff (ℓ2, v) K) with (ℓ1 : h | r) / σ →
eff (ℓ2, v) (handle K with (ℓ1 : h | r)) / σ

HandleEffectStep
handle (eff (ℓ, v) K) with (ℓ : h | r) / σ →
h v (cont (handle K with (ℓ : h | r))) / σ

HandleReturnStep
handle v with (ℓ : h | r) / σ → r v / σ

InvokeStep
(cont K) v / σ → K[v] / σ

Figure 7.2: Selected reduction rules of TesLang.

7.2.1 Syntax

The syntax of values, expressions, and evaluation contexts is shown in Figure 7.1. Most
of the constructs are standard. They include recursive functions, binary products, binary
sums, binary and unary operations, lists, and references. Non-standard constructs include
first-class continuations, cont K, and instructions to perform and handle effects: the
operations perform n e and handle e with (n : h | r), respectively. The argument e of
the instruction to perform effects is called the effect payload. Both of the instructions to
perform and to handle effects carry an effect identifier n, which is either a variable s, an
effect name, or a memory location ℓ, an effect label. Even though source programs use
only effect names as identifiers, the syntax of expressions must allow an effect identifier
to be a location so that the syntax is closed by the reduction relation. These memory
locations correspond to fresh effect labels introduced by the construct effect s in e.
Finally, the syntax includes active effects, eff (ℓ, v) K, which are also not part of source
programs, but which play a role in the definition of the operational semantics as we shall
explain in the next subsection.

7.2.2 Semantics

The small-step operational semantics of TesLang is defined as a reduction relation acting
on pairs of an expression e and a store σ. A store is a finite map from memory locations
to values. An excerpt of the reduction rules appears in Figure 7.2. The omitted reduction
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rules, such as β-reduction, and the rules for allocating, reading and writing references,
are standard. Invoking a continuation cont K with a value v reduces to K[v], the term
obtained by filling the hole of K with v. The remaining reduction rules that appear in
Figure 7.2 illustrate the subtle aspects of the calculus: introducing a fresh effect label,
and performing and handling effects.

Introducing a fresh effect label. Fresh effect labels are introduced using the store:
the instruction effect s in e allocates a memory location ℓ, initialized with the value (),
and performs the substitution of ℓ for the variable s in the expression e.

Performing and handling effects. Performing an effect transfers control to the
handler. Indeed, the instruction perform ℓ v reduces to the active effect eff (ℓ, v) •,
which start the mechanism of capture of the evaluation context. An active effect swallows
the evaluation context, frame by frame, until it reaches a handler. If the handler selects
an effect label other than ℓ, then it continues the capture mechanism and swallows the
handler. If the handler includes the effect label ℓ, then it transfers control to the effect
branch h of handler. The effect branch h receives both the argument v with which the
effect was performed, and the reification of the captured evaluation context K as a first-
class continuation cont K. Notice that the reified continuation includes the effect handler.
Recall that this corresponds to a deep-handler semantics: resuming the continuation
reinstalls the handler.

7.3 Definition of Tes

In this section, we document the definition of Tes. First, we present the syntax of types.
Second, we introduce the set of typing and subtyping rules. Finally, we illustrate the
strength and the subtleties of the system through a number of examples.

7.3.1 Syntax of types, rows, and signatures

Figure 7.3 shows the syntax of types, rows, and signatures. The set TypeVar is an infinite
set of type variables, ranged over by α, β, and γ, and RowVar is an infinite set of row
variables, ranged over by θ. We also introduce the set Attribute of purity attributes. A
purity attribute is either I for “impure” – to indicate that a program can interact with the
store by introducing fresh effect labels, or by allocating, updating, or reading references –
or P for “pure” – to indicate that a program cannot interact with the store. As we shall
explain in the next subsection, the introduction of purity attributes is related to the
introduction of polymorphic types and the value restriction [Wri95, Gar04].

Most types are standard; they include the unit type (), top and bottom types, noted
as ⊤ and ⊥, respectively, the type of Booleans bool, the type of integers int, sum and
product types, the type of lists, and reference types. The syntax also includes value-
polymorphic types to universally quantify over type variables α. The two remaining types,
annotated arrow types and effect-polymorphic types, are the most interesting, and we
discuss them separately.
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Type variables, row variables, and purity attributes

TypeVar ∋ α, β, γ RowVar ∋ θ Attribute ∋ a ::= P | I

Types, rows, and signatures

Type ∋ τ, ι, κ ::= () | bool | int | ⊥ | ⊤
| α | τ list | τ * τ | τ + τ | τ ref
| τ ρ−→a τ | ∀α. τ | ∀θ. τ

Row ∋ ρ ::= ⟨⟩ | σ · ρ

Sig ∋ σ ::= (s : τ ⇒ τ) | θ

Notation

(s : abs) ≜ (s :⊥ ⇒ ⊤)
τ −→a κ ≜ τ

⟨⟩−→a κ

τ
ρ−→ κ ≜ τ

ρ−→I κ

Figure 7.3: Syntax of types, rows, and signatures.

Annotated arrow types. In addition to an argument type ι and a return type τ ,
an arrow type ι

ρ−→a τ includes a purity attribute a and a row ρ. A row is a list of
signatures σ. (The empty row ⟨⟩ denotes the empty list, and the the row composition
_ · _ denotes list cons.) A signature, in its turn, is either a concrete signature (s : ι′ ⇒ τ ′)
or an abstract signature θ. A concrete signature (s : ι′ ⇒ τ ′) indicates that performing
the effect s is analogous to calling a function of argument type ι′ and return type τ ′.
According to this reading, the signature (s :⊥ ⇒ ⊤), noted (s : abs), forbids f from
performing s. We call this signature the absence signature. An abstract signature θ is
simply a row variable: it stands for a row ρ′ possibly containing multiple concrete and
abstract signatures. Intuitively, a program f of type ι

ρ−→a τ is a function that, when
applied to an argument of type ι, will either return a result of type τ or perform an effect
whose signature appears in the row ρ. Moreover, if a is the impure attribute I, then
this function can interact with the store during its evaluation; otherwise it cannot do
so. Moreover, Tes introduces a novel aspect to the reading of an arrow: Tes includes
the requirement that the effect labels bound by signatures in ρ are pairwise distinct. In
other words, the program f can assume that the dynamic instances of the effects in ρ
are distinct from one another. We say that a row ρ is dynamically distinct if it satisfies
this separation requirement. The syntax of rows includes rows that are not dynamically
distinct (for example, a row can have two occurrences of the same signature (s :_⇒ _)),
however, if a function carries such a row, then this function cannot be called, because the
separation requirement does not hold. Finally, we remark that, when the purity attribute
is omitted from an arrow, the attribute I is chosen by default.

Effect-polymorphic types. A row might contain one or more row variables. An effect-
polymorphic type adds the ability to quantify universally over such variables. Intuitively, a
program of type ∀θ. τ has a behavior that does not depend on the set of effects abstracted
by θ. Recall the typical example of the effect-polymorphic iter function discussed in
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Section 7.1: a higher-order iteration method whose behavior is insensitive to the set
of effects performed by its iteratee. An example of such an iteration method is the
function iter, defined as follows:

iter ≜ rec iter xs f. match xs with (λx xs. f x; iter xs f | λ_. ()) (7.5)

With effect (and value) polymorphism, we can assign the following type to iter:

iter : ∀α. ∀θ. α list→ (α
θ−→ ()) θ−→ ()

This type tells that iter is independent both of the representation of the elements of xs
and of the set of effects that f might perform. In particular, the function iter does not
perform any effects and does not intercept the effects performed by f .

7.3.2 Typing and subtyping judgment

A typing judgment in Tes assumes the form Ξ | ∆ | Γ ⊢a e : ρ : τ . It depends on three
environments: (1) a row- and type-variable context Ξ, which is a set of row and type
variables θ and α; (2) an effect-name context ∆, which is a set of effect names; and (3) a
value context Γ, which is a map from variables x to types τ . A typing judgment relates an
expression e to a purity attribute a, a row ρ, and a type τ . Intuitively, such a judgment
asserts that, during the evaluation of e, this program may perform effects according to ρ,
interact with the store according to a, and produce an output of type τ . Moreover, the
program e can assume that ρ is dynamically distinct.

A selection of the typing rules appears in Figure 7.4. These rules depend on the
operation-typing judgment, which associates an operation to a pair of an argument type ι
and a return type τ . We write this pair as ι→ τ . The derivation rules of the operation-
typing judgment appear in Figure 7.5.

We divide the remainder of this subsection into three parts: (1) purity attributes and
the value restriction, (2) an overview of the main typing rules, and (3) the monotonicity
rule and the subsumption relations.

Purity attributes and the value restriction

It is well-known that, in the presence of mutable state, the unrestricted introduction of
polymorphic types is unsound [Tof90]. One solution is the value restriction [Wri95, Gar04]:
to restrict polymorphism to values. With purity attributes, we adopt a slightly more
general solution: we restrict the introduction of polymorphic types to pure expressions, that
is, to expressions whose typing judgment carries the attribute P . Indeed, rules TLamTyped
and RLamTyped allow the generalization of both row and type variables of a pure
expression e. This solution is more general than the value restriction, because every value
is a pure expression. The only impure constructs are reading, writing, and allocating
references, and allocation of effect labels. Therefore, even constructs such as handlers and
effects can be considered pure expressions and can thus have their row and type variables
generalized. Kammar and Pretnar study a similar system [KP17]. They show that, in the
absence of references and allocation of effect labels, the unrestricted generalization of type
variables is sound. The soundness of Tes subsumes this result. Finally, we remark that the
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Typing judgment Ξ | ∆ | Γ ⊢a e : ρ : τ

UnitTyped
Ξ | ∆ | Γ ⊢a () : ρ : ()

BoolTyped
Ξ | ∆ | Γ ⊢a b : ρ : bool

IntTyped
Ξ | ∆ | Γ ⊢a i : ρ : int

OpTyped
⊢Op ⊙ : ι→ τ

Ξ | ∆ | Γ ⊢a ⊙ : ρ : ι
ρ−→a τ

VarTyped
Γ(x) = τ

Ξ | ∆ | Γ ⊢a x : ρ : τ

TLamTyped
α /∈ Ξ,Γ, ρ

α,Ξ | ∆ | Γ ⊢P e : ρ : τ

Ξ | ∆ | Γ ⊢a e : ρ : ∀α. τ

RLamTyped
θ /∈ Ξ,Γ, ρ

θ,Ξ | ∆ | Γ ⊢P e : ρ : τ

Ξ | ∆ | Γ ⊢a e : ρ : ∀θ. τ

ReadTyped
Ξ | ∆ | Γ ⊢a e : ρ : τ ref

Ξ | ∆ | Γ ⊢I ! e : ρ : τ

TAppTyped
Ξ | ∆ | Γ ⊢a e : ρ : ∀α. τ

Ξ | ∆ | Γ ⊢a e : ρ : τ{τ ′/α}

RAppTyped
Ξ | ∆ | Γ ⊢a e : ρ : ∀θ. τ

Ξ | ∆ | Γ ⊢a e : ρ : τ{ρ′/θ}

WriteTyped
Ξ | ∆ | Γ ⊢a e : ρ : τ ref
Ξ | ∆ | Γ ⊢a′ e′ : ρ : τ

Ξ | ∆ | Γ ⊢I e := e′ : ρ : ()

LetEffTyped
s /∈ Γ, ρ, τ

Ξ | s,∆ | Γ ⊢a e : (s : abs) · ρ : τ

Ξ | ∆ | Γ ⊢I effect s in e : ρ : τ

AllocTyped
Ξ | ∆ | Γ ⊢a e : ρ : τ

Ξ | ∆ | Γ ⊢I ref e : ρ : τ ref

PerformTyped
Ξ | ∆ | Γ ⊢a e : ρ : ι (s : ι⇒ τ) ∈ ρ s ∈ ∆

Ξ | ∆ | Γ ⊢a perform s e : ρ : τ

RecTyped
Ξ | ∆ | Γ, f : ι

ρ−→a τ, x : ι ⊢a e : ρ : τ

Ξ | ∆ | Γ ⊢a′ rec f x. e : ⟨⟩ : ι ρ−→a τ

HandleTyped
σ = (s : ι⇒ τ) σ′ = (s : ι′ ⇒ τ ′) ρ′ = σ′ · ρ s ∈ ∆ Ξ | ∆ | Γ ⊢a e : σ · ρ : κ

Ξ | ∆ | Γ ⊢a h : ρ′ : ι −→a (τ
ρ′−→a κ′)

ρ′−→a κ′ Ξ | ∆ | Γ ⊢a r : ρ′ : κ
ρ′−→a κ′

Ξ | ∆ | Γ ⊢a handle e with (s : h | r) : ρ′ : κ′

MonotonicityTyped
a ≤A a′ ⊢b ρ ≤R ρ′

Ξ | ∆ | Γ ⊢a e : ρ : τ ⊢ τ ≤T τ ′

Ξ | ∆ | Γ ⊢a′ e : ρ′ : τ ′

AppTyped
Ξ | ∆ | Γ ⊢a e : ρ : ι

ρ−→a τ
Ξ | ∆ | Γ ⊢a e′ : ρ : ι

Ξ | ∆ | Γ ⊢a e e′ : ρ : τ

Figure 7.4: Typing rules.
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Operation-typing judgment ⊢Op ⊙ : ι→ τ

⊢Op + : int * int→ int ⊢Op not : bool→ bool

⊙ ∈ {and, or}
⊢Op ⊙ : bool * bool→ bool

τ ∈ {(), bool, int}
⊢Op == : τ * τ → bool

Figure 7.5: Operation-typing rules.

reason why rule LetEffTyped carries an impure marker I is mainly technical: since the
allocation of an effect label is implemented using memory allocation, such an expression
interacts with the store. We believe that marking it as pure would not break the system’s
soundness. (Kammar and Pretnar [KP17] note on Paragraph 1 of the Conclusion Section
that a proof of this statement remains an open problem.)

Overview of the main typing rules

We discuss the rules for allocating effect labels (LetEffTyped), performing effects (Per-
formTyped), and handling effects (HandleTyped).

Rule PerformTyped states that to perform an effect under the signature (s : ι⇒ τ),
a program must produce a value of type ι, and, in return, it can expect a value of type τ .
This typing rule confirms the intuitive idea that performing an effect is like calling a
function of argument type ι and return type τ .

If we read rule LetEffTyped in the backwards direction (from the conclusion to the
premise), then this rule states that allocating s gives e the ability to use s as an effect
name, which is initially attached to the absence signature. Because a row is supposed to
be dynamically distinct, the introduction of s to e’s row, ρ, means that e can suppose s
binds a fresh effect label, that, in particular, does not clash with a label bound by an
effect name in ρ.

Rule HandleTyped, for installing a handler, expresses the idea that a handler estab-
lishes a boundary between the client e, which performs s effects according to σ, and the
outer context in which the handler appears, where s effects abide by σ′.

Both the effect branch h and the return branch r can perform s effects according to σ′.
Moreover, the continuation corresponds to h’s second argument, whose type is τ

ρ′−→a κ′.
It is interesting to remark that (1) the continuation has an arrow type, (2) this arrow
is annotated by the row ρ′, and (3) the return type of the continuation is the same as
the one assigned to the handler. The first remark justifies that a delimited continuation
can be seen as a function. The explanation for second and third remarks comes from the
semantics of deep handlers: because the handler is reinstalled as the top frame of the
continuation, s effects performed by the interrupted client are intercepted by the handler,
who can introduce effects according to σ′.
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Subsumption relation on types D ⊢ τ ≤T τ

Bot
D ⊢ ⊥ ≤T τ

TypeRefl
D ⊢ τ ≤T τ

Top
D ⊢ τ ≤T ⊤

TypeTrans
D ⊢ τ ≤T τ ′ D ⊢ τ ′ ≤T τ ′′

D ⊢ τ ≤T τ ′′

Arrow
D′ = ⟨ρ′⟩ ∪D a ≤A a′ D′ ⊢ ι′ ≤T ι

D′ ⊢ τ ≤T τ ′ D′ ⊢b ρ ≤R ρ′

D ⊢ ι
ρ−→a τ ≤T ι′

ρ′−→a′ τ
′

Subsumption relation on signatures D ⊢ σ ≤S σ

SigRefl
D ⊢ σ ≤S σ

SigConc
D ⊢ ι ≤T ι′ D ⊢ τ ′ ≤T τ

D ⊢ (s : ι⇒ τ) ≤S (s : ι′ ⇒ τ ′)

Subsumption relation on rows D ⊢b ρ ≤R ρ

Empty
D ⊢b ⟨⟩ ≤R ⟨⟩

RowCons
D ⊢b ρ ≤R σ · ρ

Swap
D ⊢b σ · σ′ · ρ ≤R σ′ · σ · ρ

Skip
D ⊢ σ ≤S σ′ D ⊢false ρ ≤R ρ′

D ⊢b σ · ρ ≤R σ′ · ρ′

Erase
D ⊢ s /∈ ρ

D ⊢true (s : abs) · ρ ≤R ρ

RowTrans
D ⊢b ρ ≤R ρ′ D ⊢b ρ′ ≤R ρ′′

D ⊢b ρ ≤R ρ′′

Figure 7.6: Subsumption relations on types, signatures, and rows.

Monotonicity rule and the subsumption relation.

Rule MonotonicityTyped states the conditions under which a typing judgment subsumes
another. These conditions are written in terms of subsumption relations on attributes,
types, rows, and signatures. If two terms are related by a subsumption relation, then we
say the term in the left-hand side is stronger than the one in the right-hand side.

The subsumption relation on attributes, noted _ ≤A _, is the unique total order
on Attribute where P is less than I. This relation can be defined as follows:

a ≤A a′ ≜ (a = I =⇒ a′ = I)

Figure 7.6 shows the definition of the remaining subsumption relations. Before we
present these relations, let us introduce a notion on which they all depend: the notion of a
disjointness context. A disjointness context D maps an effect name to a pair of a multiset
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of effect names S and a set of row variables V . Informally, a disjointness context D
stores disjointness information. In particular, if D maps an effect name s to the pair
(S, V ), then the dynamic label bound by s is distinct from the dynamic labels bound
by S and by V . We formally capture this description in Section 7.4, where we introduce
the semantic interpretation of a disjointness context.

Why are disjointness contexts necessary? We introduce disjointness contexts
to allow the sound erasure of absence signatures of a row. The erasure of an absence
signature corresponds to the claim that σ · ρ ≤R ρ, where σ stands for (s : abs). However,
this claim is not true in general. Indeed, if such subsumption relation was permitted,
then the relation σ · σ ≤R σ would be derivable. Intuitively, this relation says that a
function f with row σ · σ can be seen as a function with row σ. However, the row σ · σ
is not dynamically distinct, whereas the singleton row σ trivially is. Therefore, f has a
false precondition, whereas a function with row σ does not. Assigning f the row σ would
erase an unsatisfiable constraint, and thus lead to the acceptance of unsafe programs. An
example of such an unsafe program is the following one:

1 effect s in
2 handle
3 handle (perform s ()) with (s : λx_. not x | λ_. true)
4 with (s : λ_ _. () | λ_. ())

Under the assumption that the relation σ · σ ≤R σ is derivable, it is possible to show that
this program is assigned the empty row and type (). The type derivation starts with
the application of rule LetEffTyped, which introduces σ to the empty row. Then, the
application of rule MonotonicityTyped, with the relation σ · σ ≤R σ as the instance of
the subsumption relation on rows, allows the type derivation of the program between
lines 2–4 to be completed under the row σ · σ. Because the row has two signatures
for the same name s, we can install two handlers for the same effect s. The handler
on line 2 allows its client – the program on line 3 – to perform s effects according to
the signature (s : ()⇒ ()). The handler on line 3 allows its client to perform s effects
according to the signature (s : bool⇒ ()). Because the client of the handler on line 3
is also in the scope of the handler on line 2, it can perform s effects according to either
one of these signatures. It then deviously chooses to perform an s effect according to
the signature handled by the outermost handler. The innermost handler intercepts this
effect and the mismatch of signatures leads to a runtime error due to the execution of the
expression not ().

With disjointness contexts, the erasure of absence signatures can be soundly permitted.
One can allow the erasure of s in (s : abs) · ρ under a disjointness context D, provided D
guarantees that the dynamic label of s is different from the dynamic labels in ρ. We
explain this idea in more detail when presenting the subsumption relation on rows.

Subsumption relation on types. The subsumption relation on types, noted _ ⊢
_ ≤T _, is a relation parameterized by a disjointness context. The rules in Figure 7.6 state
that this relation is reflexive and transitive and that it admits ⊥ and ⊤ as bottom and top
elements, respectively. Moreover, the relation is contravariant on the argument type of an
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arrow and covariant on the result type. The rule Arrow enriches the disjointness context.
Intuitively, the rule exploits the assumption that ρ′ is dynamically distinct to enrich the
disjointness information stored in the current context D. The non-aliasing information
learnt from the well-formedness of ρ′ is represented by the disjointness context ⟨ρ′⟩. Its
definition is written in terms of the functions conc and abst . The function conc computes
the multiset of effect names of a row, whereas the function abst computes the set of row
variables of a row. They are inductively defined as follows:

conc (⟨⟩) ≜ {}
conc ((s :_ ) · ρ) ≜ {s} ∪ conc (ρ)

conc (θ · ρ) ≜ conc (ρ)

abst (⟨⟩) ≜ {}
abst ((s :_ ) · ρ) ≜ abst (ρ)

abst (θ · ρ) ≜ {θ} ∪ abst (ρ)

Notice that, because conc computes a multiset, the union, singleton set, and empty set
have different meaning in each of the previous definitions. In the definition of conc,
they are interpreted as multiset constructs, whereas, in the definition of abst , they are
interpreted as set constructs.

The disjointness context ⟨ρ′⟩ can thus be defined as follows:

⟨ρ′⟩ ≜
⋃

s∈conc (ρ′)

{s 7→ (conc (ρ′) \ {s}, abst (ρ′))}

The context ⟨ρ′⟩ maps every effect name s in ρ′ to the pair of the multiset of effect names
in ρ′, excluding one occurrence of s, and the set of row variables in ρ′. The construction
of this context exploits the assumption that ρ′ is dynamically distinct: the dynamic label
bound by s is distinct from the dynamic labels bound by conc (ρ′) \ {s} and by abst (ρ′).

To update a context D with ⟨ρ′⟩, it suffices to perform the union of these two contexts.
The union of contexts D1 and D2 is defined as follows:

(D1 ∪D2) (s) ≜


D1 (s) ∪D2 (s) if s ∈ dom(D1) ∩ dom(D2)

Di (s) if s ∈ dom(Di)

undefined otherwise

The union of pairs D1(s) and D2(s) is defined as the pairwise union.

Subsumption relation on signatures. The subsumption relation on signatures,
noted _ ⊢ _ ≤S _, is parameterized by a disjointness context. The rules in Figure 7.6
state that this relation is reflexive, and that, unlike an arrow constructor, the signature
constructor (_ :_ ⇒ _) is covariant in its domain and contravariant in its range.
(Transitivity is derivable.) The seemingly inverted variance in the case of a signature
constructor matches the intuition that an effect signature (s : ι⇒ τ) is an arrow in the
value context: a program that carries such a signature can perform s effects in the same
way as it calls a function of type ι −→ τ .

Subsumption relation on rows. The subsumption relation on rows, noted _ ⊢_
_ ≤R _, is parameterized by a disjointness context and a Boolean flag b. When true, this
flag represents a permission to erase absence signatures. From the combination of rules
in Figure 7.6, it follows that this relation is reflexive and transitive. Moreover, it follows
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that D ⊢b ρ ≤R ρ′ is derivable for any row ρ′ that includes ρ, regardless of the order of
the signatures in ρ′. In particular, ρ is stronger than any of its permutations. The ability
to freely permute entries in a row is present in systems that impose the restriction to
lexically scoped handlers [BPPS20, ZM19], and in Links’s type system [HL16], which, by
means of a syntactic criteria, does not allow repeated occurrences of a label in a row. The
systems studied in [BPPS19, BPPS18, Lei17], on the other hand, do not support this
feature.

Rule Erase depends on the following assertion:

D ⊢ s /∈ ρ ≜ s ∈ dom(D) ∧ (conc (ρ), abst (ρ)) ⊆ D(s)

This assertion claims that, from the disjointness information stored in D, one can derive
that the label bound by s is distinct from the labels in ρ. Rule Erase also asks for the
flag to be true: one must have the permission to erase signatures. This permission is lost
when comparing rows of the form σ · ρ and σ′ · ρ′ through rule Skip. Intuitively, this
restriction is necessary, because otherwise one would be able to erase a signature s from
ρ without checking that the labels bound by s and σ are distinct. We omit the technical
arguments for the sake of space, but it is possible to exhibit an unsafe program if we
consider the subsumption rules without flags.

7.3.3 Examples

Now, we present a number of examples that illustrate the subtleties of the system: how
to exploit the implicit assumption that rows are dynamically distinct in order to restrict
the effects a program can perform, and how to exploit the subsumption rules.

Filter

As the first example, let us consider the function filter from Section 7.1. The goal is to
show that filter is a well-typed program in Tes and to understand what restrictions
are enforced by its type. In particular, we want to require that, during any application
filter xs f , the effects performed by f do not include yield effects. Therefore, a yield
handler will not accidentally intercept effects performed by f .

Recall the definition of filter (Eq. 7.2), which applies the predicate f to each element
of xs, and yields those elements for which f returns true:

filter xs f ≜
let g = (λx. if f x then perform yield x) in iter xs g

The definition depends on the higher-order iteration method iter (Eq. 7.5), which
applies a user-provided function to each element of a list. Tes accepts iter and assigns
to it the type

iter : ∀α. ∀θ. α list→ (α
θ−→ ()) θ−→ ().

Tes also accepts filter and assigns to it the following type:

filter : ∀α. ∀θ. α list→ (α
θ−→ bool)

(yield :α⇒())· θ−−−−−−−−−−→ ()
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Since the body of filter is defined as an application of iter, to type check filter, it
suffices to show that the arguments of this application respect iter’s type. The only

nontrivial step in this task is to show that g has type α
Y (α)· θ−−−−→ (), where α and θ are the

variables quantified by filter’s type and that are introduced in the first steps of type
checking, and where Y (α) is an abbreviation for the signature (yield :α⇒ ()). This step
is nontrivial because f ’s row θ does not exactly match the row Y (α) · θ under which f is
called and which must include the signature Y (α) since g might perform this effect. But
this step is not a problem for Tes, it suffices to apply rule MonotonicityTyped, which
allows the extension of rows: in particular, the relation D ⊢b θ ≤R Y (α) · θ is derivable
under any context D and flag b.

What does filter’s type mean? This type means filter’s behavior is independent
on both the representation of the list elements and the set of effects that f might perform.
Moreover, the row Y (α)· ρ tells that the program filter xs f performs either yield effects
or θ effects (introduced by f). Finally, filter’s type prevents f from performing yield
effects. At first, it might seem strange that filter’s type is polymorphic on θ: what
stops one from specializing θ to the singleton row Y (α), thus allowing f to perform yield?
The answer is: nothing. However, such a specialized version of filter would be useless.
Implicitly, the type of filter imposes the requirement that the row Y (α)· θ is dynamically
distinct. This requirement appears when filter is fully applied. So, although one could
specialize filter with the row Y (α), one would not be able to invoke this version of
filter because the separation requirement for such a row would not hold.

Counter

In Section 7.1, we introduced the function counter (Eq. 7.1.1), which receives a second-
order function ff as an argument and produces a version of this function that counts the
number of times ff calls its argument function f . Type-checking counter depends on the
guarantee that the effects performed by f are not intercepted by the handler installed by
counter. Although, this behavior is clear from an operational-semantics point of view –
the handler targets a fresh dynamic label – to statically ensure it is challenging. Previous
type systems that accepted this program [ZM19, BPPS20] were designed for languages
restricted to lexically scoped handlers. Therefore, type-safety of counter in such systems
is a weaker result than the one obtained in Tes, because the language considered in such
systems is less expressive than TesLang, which supports traditional handlers and the
unrestricted allocation of effect labels. We believe Tes is the only system that supports
such a language and accepts counter. The closest related previous work of which we are
aware is the system λHEL, devised by Biernacki et al. [BPPS19]. They consider a calculus
that also supports unrestricted allocation of effect labels, and where the function counter
could be similarly defined. However, in λHEL, the function counter is ill-typed. To
satisfy the type checker, the programmer would have to place a lift coercion around the
function call f (). 1

In Tes, the program counter can be assigned the following type:

counter : ∀αβ γ. (∀θ. (α θ−→ β)
θ−→ γ)→ (∀θ. (α θ−→ β)

θ−→ (γ * int))
1This claim was confirmed by the authors via personal communication.
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This type means that counter works with any effect-polymorphic second-order function ff
and that counter ff produces a function whose type is similar to ff ’s type – the only
difference is the return type γ * int, which is the product of ff ’s return type and the
type of integers. In particular, like the function ff , the result of counter ff is effect-
polymorphic: it can be further applied to a function f regardless of the effects performed
by this function.

Lexically scoped handlers

As the last example, let us consider the typing rule for lexically scoped handlers. This
example illustrates an interesting application of the subsumption rule to erase an absence
signature. Recall the definition of a lexically scoped handler (Eq. 7.1) in TesLang as a
program that (1) generates a fresh effect label bound by s, and (2) installs a s handler
over the application of e to a function that performs this effect:

lex-handles e with (h | r) = effect s in handle (e (λx. perform s x)) with (s : h | r)

Tes admits the following derived typing rule for this construct:

LexHandleTyped
Ξ | ∆ | Γ ⊢a e : ρ : ∀θ. (ι θ−→a τ)

θ· ρ−−→a κ s /∈ Γ, ρ, ι, τ, κ, κ′

Ξ | ∆ | Γ ⊢a h : ρ : ι −→a (τ
ρ−→a κ′)

ρ−→a κ′ Ξ | ∆ | Γ ⊢a r : ρ : κ
ρ−→a κ′

Ξ | ∆ | Γ ⊢I lex-handles e with (h | r) : ρ : κ′

(This rule is not original; it is similar to the rule for handlers presented in Figure 3 of the
paper [BPPS20].) The expression e must be polymorphic in the effect θ: it must work
independently of the label that is bound by s. The first step in the derivation of this
rule consists of the application of rule LetEffTyped. This application is the reason that
the conclusion of rule LexHandleTyped is marked as impure, and it is also the origin
of the freshness condition on s that one sees in this same rule. It is unpleasant to have
such a condition polluting the rule, but this condition can be easily satisfied, provided
one is willing to rename s to a fresh s′. The second (and last) step in the derivation
of LexHandleTyped is the application of rule HandleTyped. The main step to dispatch
the premises of rule HandleTyped is to prove that one can introduce s in h’s type:

ρ′ = (s : abs) · ρ Ξ | ∆ | Γ ⊢a h : ρ : ι −→a (τ
ρ−→a κ′)

ρ−→a κ′

Ξ | ∆ | Γ ⊢a h : ρ : ι −→a (τ
ρ′−→a κ′)

ρ′−→a κ′

To establish this implication, we apply rule MonotonicityTyped. Then, it suffices to
show the following chain of subsumption relations:

ι −→a (τ
ρ−→a κ′)

ρ−→a κ′ ≤T ι −→a (τ
ρ−→a κ′)

ρ′−→a κ′ ≤T ι −→a (τ
ρ′−→a κ′)

ρ′−→a κ′

The first step follows trivially from the ability to extend rows – by rule RowCons, the
relation ⊢b ρ ≤R ρ′ holds for any b – and the second step follows from the ability to erase
absence signatures – by rule Erase, the relation ⟨ρ′⟩ ⊢true ρ′ ≤R ρ holds, and, since the
right-most arrow includes the row ρ′, we can satisfy the separation requirement stored
in ⟨ρ′⟩.
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Weakest precondition wpa e ⟨E⟩{Φ}

wpa e ⟨E⟩{Φ} ≜ ValidDistinct E.1 −−∗ ewpa e ⟨E⟩{Φ}

Basic weakest precondition ewpa e ⟨E⟩{Φ}

ewpa v ⟨E⟩{Φ} ≜ if a = P then Φ(v) else ˙|⇛Φ(v)

ewpa (eff (ℓ, v) K) ⟨E⟩{Φ} ≜ ∃Ψ. (ℓ,Ψ) ∈ E ∗ (↑2Ψ) v (λw. ▷ ewpa K[w] ⟨E⟩{Φ})

ewpI e ⟨E⟩{Φ} ≜ ∀σ. S(σ) ≡−∗⊤ ∅


∃e′, σ′. e / σ −→ e′ / σ′ ∗
∀e′, σ′. e / σ −→ e′ / σ′ ≡−∗∅ ∅ ▷ |⇛∅ ⊤

S(σ′) ∗ ewpI e′ ⟨E⟩{Φ}

ewpP e ⟨E⟩{Φ} ≜ ∀σ.
{
∃e′. e / σ −→ e′ / σ ∗
∀e′. e / σ −→ e′ / σ −−∗ ▷ ewpP e′ ⟨E⟩{Φ}

Figure 7.7: Definition of wp and ewp.

7.4 Metatheory

In this section, we prove strong type soundness of Tes. Strong type soundness states that,
if a complete program is accepted by the system, then this program enjoys type and
effect safety: it can thus be safely executed, and no effect is left unhandled. To prove
this statement, we interpret Tes typing judgments as specifications written in TesLogic, a
novel Separation Logic [ORY01] for reasoning about TesLang programs. This approach to
prove the soundness of a type system is known as the semantic approach[AFM05, KJSB17,
KTB17]. This section is structured as follows: first, we present TesLogic; second, we
introduce the interpretation of typing judgments; finally, we state and prove the soundness
of Tes.

7.4.1 Program logic

Specification language

We have seen in the previous chapters that the notion of protocol works quite well
as a logical description of the interaction between handlee and handler. Therefore, it
seems natural to keep this notion as the way to specify the effects that a program may
perform. The main challenge now is that a TesLang program performs labeled effects
to interact with different labeled handlers. Each labeled handler may interpret effects
of different nature. For example, the label exit may be used to implement an exception
and the label ask may be used to implement a read-only memory cell containing the
value 42. These handlers conform to different disciplines: the exit handler, for instance,
discards the captured continuation, whereas the ask handler immediately resumes the
paused computation with 42. Instead of specifying a program that performs both of these
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effects, exit and ask , with a single protocol Ψ, the approach proposed by TesLogic is
pretty simple: to specify a program by a list of pairs of labels and protocols.

Indeed, TesLogic’s notion of weakest precondition assumes the form wpa e ⟨E⟩{Φ},
where E is a protocol list E, a list of pairs of an effect label and a protocol. The protocol
list E maps each effect label ℓ to a protocol describing the ℓ-labeled effects that e performs
during its execution.

Figure 7.7 shows the definition of wp, which is written in terms of the basic weakest
precondition ewp. The basic weakest precondition is (recursively) defined by case distinc-
tion on a and e. (Recursive calls are guarded by a later modality, thus ensuring that ewp
is well-defined.) When a is P , neither the update modality nor the state interpretation S 2

occur in the definition of ewp. As for the the case distinction on e, we have to consider
the three following cases:

1. Value. When e is a value v, this value must satisfy the postcondition Φ.

2. Effect. When e is an active effect eff (ℓ, v) K, the label ℓ must be associated to a
protocol Ψ, such that, for every possible answer w ascribed by Ψ to the request v,
it is safe to resume K with w. This property is stated in terms of the persistent
upward closure (Def. 6.1): (↑2Ψ) vΦ. We use the persistent version of the upward
closure, because TesLang allows multi-shot continuations and because Tes does not
rule out programs that exploit this feature.

3. Reducible expression. When e is neither a value nor an effect, then e must be a
reducible expression and every possible reduction e′ must be safe.

The weakest precondition wp is defined on top of ewp by adding the assumption that
the list of labels in E is valid and distinct : these labels have been allocated and there
is no aliasing among them. We write E.1 for the list of effect labels in E, that is, the
projection of the first component of every pair in E. The valid-and-distinct property is
captured by the predicate ValidDistinct :

ValidDistinct L ≜ NoDup L ∧ (∀ℓ ∈ L. ℓ 7→2 ())

The assertion NoDup L captures the non-aliasing claim: it states that there are no
duplicates in the list L. The assertion ℓ 7→2 () is the claim that ℓ has been allocated.
Because both of these assertions are persistent, so is the assertion ValidDistinct L. This
is a desirable property, because, as we shall discuss in Subsection 7.4.1, the frame rule is
unsound in TesLogic. Therefore, working with non-persistent assertions in TesLogic is
problematic.

Reasoning rules

Figure 7.8 shows a subset of the reasoning rules of TesLogic. These are the most relevant
rules to the soundness proof of Tes. We briefly discuss each one of them. We say that a
reasoning rule justifies a typing rule to mean that this is the key rule to prove that the
typing rule preserves the semantic interpretation of judgments.

2The definition of S here is the same as in Chapter 2: the assertion S(σ) states that the authoritative
piece of γheap is σ; that is, S(σ) ≜ •σ γheap .
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TesValue
Φ(v)

wpa v ⟨E⟩{Φ}

TesMonotonicity
a ≤A a′ 2∀w.Φ(w) −−∗ Φ′(w)

wpa e ⟨E⟩{Φ} E ≤L E′

wpa′ e ⟨E′⟩{Φ′}

TesBind
K is neutral

wpa e ⟨E⟩{v.wpa K[v] ⟨E⟩{Φ}}
wpa K[e] ⟨E⟩{Φ}

TesPerform
(ℓ,Ψ) ∈ E Ψ allows eff v {Φ}

wpa (perform ℓ v) ⟨E⟩{Φ}

TesLetEff
∀ℓ.wpa (e [ℓ/s]) ⟨(ℓ,⊥) :: E⟩{Φ}
wpI (effect s in e) ⟨E′⟩{Φ′}

TesHandle
Handlera ⟨Ψ⟩{Φ} (h | r) ⟨E′⟩{Φ′}

E′ = (ℓ,Ψ′) :: E wpa e ⟨(ℓ,Ψ) :: E⟩{Φ}
wpa (handle e with (ℓ : h | r)) ⟨E′⟩{Φ′}

TesInfinitaryConjunction
E is pure

2∀x. wpP e ⟨E⟩{y.Φ(x, y)}
wpa e ⟨E⟩{y.∀x.Φ(x, y)}

Figure 7.8: Reasoning rules

Rule TesValue expresses the idea that a program can terminate by returning a
value v that satisfies the postcondition. This rule justifies the typing rules of values
(rules UnitTyped, BoolTyped, and IntTyped).

Rule TesMonotonicity expresses the idea that, if a program e satisfies the specifica-
tion ewpa e ⟨E⟩{Φ}, then it also satisfies a specification ewpa′ e ⟨E′⟩{Φ′}, where a′, E′,
and Φ′ are weaker than than a, E, and Φ, respectively. The predicate Φ′ is weaker than
Φ if Φ(v) implies Φ′(v) for every v. The premise of rule TesMonotonicity stating this
implication is covered by a persistence modality, because, in the presence of multi-shot
continuations, a program may terminate multiple times. This persistence modality is the
reason why the frame rule does not hold in TesLogic; only a restricted version holds: one
can apply the frame rule under the empty protocol list []. Intuitively, the empty protocol
list states the absence of effects, and, under this restriction, a program can never be part
of the context captured by a multi-shot continuation. The protocol list E′ is weaker than
E, noted E ≤L E′, if E.1 is valid and distinct, under the assumption that E′.1 is valid
and distinct, and if for every Ψ in E there is a protocol Ψ′ in E′ that describes the same
effect ℓ as Ψ and that is weaker than Ψ:

E ≤L E′ ≜
(ValidDistinct E′.1 −−∗ ValidDistinct E.1) ∧
(2∀(ℓ,Ψ) ∈ E, v,Φ. (↑2Ψ) vΦ −−∗ ∃Ψ′. (ℓ,Ψ′) ∈ E′ ∧ (↑2Ψ′) vΦ)

The property of Ψ′ being weaker than Ψ is the assertion that every pair of a request
v and a predicate Φ that is allowed by Ψ is also allowed by Ψ′.

Rule TesBind allows context-local reasoning : one can reason about the execution of a
program independently of its surrounding evaluation context. This rule is surprising given
the non-local nature of effects and handlers. There is however a side condition: the context
K must be neutral, that is, K cannot contain a frame of the form handle _ with (ℓ : h | r).

To reason about non-neutral contexts, one can employ rule TesHandle. This rule
expresses the idea that to install a handler for a label ℓ around a program e, it suffices to
know by which protocol e abides when performing effects labeled ℓ. Indeed, the rule asks
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for the verification of e according to a protocol list that associates ℓ to Ψ. The verification
of r and h is delegated to the handler judgment, noted Handler, which compresses the
specifications of r and h into a single assertion:

Handlera ⟨Ψ⟩{Φ} (h | r) ⟨E′⟩{Φ′} ≜
(2∀v. Φ(v) −−∗ wpa (r v) ⟨E′⟩{Φ′}) ∧(

2∀v, k. (↑2Ψ) v (λw. wpa (k w) ⟨E′⟩{Φ′}) −−∗
wpa (h v k) ⟨E′⟩{Φ′}

)
Indeed, the handler judgment is the conjunction of r’s and h’s specifications. The
specification of r assumes that v satisfies e’s postcondition and claims that r satisfies
the postcondition Φ′ and protocol list E′. The specification of h requires h to satisfy
postcondition Φ′ and protocol list E′ under two assumptions: (1) that v corresponds to
the payload of a effect labeled ℓ performed by a program that abides by Ψ, and (2) that
k represents this suspended program.

Rule TesPerform tells that one can reason about performing an effect as calling a
function. A protocol Ψ dictates which answer a client can expect in exchange for a value
v in a similar way as a program specification dictates which result one can expect from a
function call.

Rule TesLetEff justifies the typing rule LetEffTyped. The protocol ⊥, to which the
label ℓ is initially associated, is the empty protocol. It is defined as λ_ _. False. A program
that abides by this protocol performs no effect, because the assertion ⊥ allows eff _ {_}
never holds. The proof of rule TesLetEff is essentially the proof that, after the allocation
of a fresh effect label, the list E′ = (ℓ,⊥) :: E is valid and distinct, given that E is
valid and distinct. The key step in this proof is the introduction of a full points-to
assertion ℓ 7→ (), which we exploit to prove that ℓ is not an alias of a previously allocated
label, and which we update to a persistent points-to assertion ℓ 7→2 () to complete the
proof that E′ is valid and distinct.

Rule TesInfinitaryConjunction justifies the rules for introducing polymorphic types,
namely rules TLamTyped and RLamTyped. This rule is atypical, because the unrestricted
infinitary conjunction rule does not hold in Separation Logic [O’H07]. From a technical
point of view, the unrestricted infinitary conjunction rule does not hold in the particular
case of Iris, because a universal quantification does not commute with the update modality.
Here, we are able to prove a restricted version of the infinitary conjunction rule: the
premise includes the attribute P , which excludes the update modality from the definition
of wpP . Another restriction is that the protocol list E must be pure. The list E is pure,
if every protocol in E is pure. A protocol Ψ is pure if the following assertion holds:

∀v. ∃Q. ∀Q′. Ψ v Q′ −−∗ (Ψ v Q ∗ (∀w. Qw −−∗ 2Q′w))

This is a sufficient condition for proving the rule TesInfinitaryConjunction. Intu-
itively, the definition of a pure protocol Ψ asserts that Ψ admits a minimal set of answers
described by a predicate Q, and that this predicate is persistent, hence a pure protocol.
To see why this condition is useful in the proof of TesInfinitaryConjunction, one must
consider the case where e is an active effect and unfold the definition of the persistent
upward closure (Def. 6.1 of Chapter 6). In this case, the premise of this rule is an assertion
of the form “2∀x . . .∃Q′ . . .”, whereas the goal assumes the form “∃Q′ . . . ∀x . . .”. The
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existentially quantified predicate Q′ comes from the unfolding of the upward closure. The
existence of a minimal predicate Q means that both occurrences of Q′ are in essence the
same predicate; that is, Q′ does not depend on x.

Soundness of TesLogic

TesLogic’s adequacy theorem is stated as follows:

Theorem 7.1 (Adequacy) If wpa e ⟨[]⟩{Φ} holds then e is safe.

Recall that the adequacy theorem of a program logic justifies reasoning in terms of
weakest preconditions: Theorem 7.1 states that the TesLogic assertion wpa e ⟨[]⟩{Φ}
implies the meta-level assertion that e is safe; that is, the execution of e either diverges or
terminates with a value, but it does not crash, nor does it perform an unhandled effect.

7.4.2 Semantic interpretation

Semantic interpretation of typing judgments

The semantic interpretation of judgments translates Tes typing judgments to TesLogic
specifications: it maps Ξ | ∆ | Γ ⊢a e : ρ : τ to a semantic judgment Ξ | ∆ | Γ ⊨a

e : ρ : τ . The definition of a semantic judgment is written in terms of the semantic
interpretation of types, signatures, and rows. Types are interpreted as semantic types
that inhabit SemType ≜ {P : Val → iProp | ∀v. P (v) is persistent}. Therefore, semantic
types are persistent predicates, which can be seen as sets of values. The persistence
requirement reflects the lack of a substructural discipline in Tes, that is, Tes is not
an affine type system. Signatures are interpreted as semantic signatures that inhabit
SemSig ≜ {E : List (Loc × Protocol) | E is pure}. Therefore, semantic signatures are
pure protocol lists. Rows are interpreted as semantic rows that inhabit SemRow , which
coincide with semantic signatures, that is, semantic rows are also pure protocol lists.

The interpretation of types, signatures, and rows appears in Figure 7.9. It has two
parameters: (1) a row- and type-variable map η, which maps row variables to semantic
rows and type variables to semantic types; and (2) an effect-name map δ, which maps
effect names s to effect labels.

The interpretation of types follows the standard approach for the definition of unary
logical relations in Iris [KTB17]. The only case where our interpretation deviates from
previous works is in the interpretation of arrow types. The interpretation of an ar-
row type κ

ρ−→a τ contains values v that satisfy the specification 2∀w.VJκKδη(w) −−∗
wpa (v w) ⟨RJρKδη⟩{y.VJτKδη(y)}. This specification states that v produces values in the
interpretation of τ when applied to a value in the interpretation of κ. The novel aspect
of this interpretation is the use of our notion of the weakest precondition, wp, which
describes the effects that v might perform. The description of these effects is given
by the interpretation of the row ρ: it is the list concatenation of the interpretation of
the signatures in ρ. A row variable θ is interpreted as the semantic row η(θ), and a
concrete signature (s : ι′ ⇒ τ ′) is interpreted as the (singleton list containing the) pair
of the dynamic label to which s is bound and the protocol dictating that the answer to
a value in the interpretation of ι′ is a value in the interpretation of τ ′. Therefore, v’s
specification states that v performs effects according to the interpretation of ρ. Moreover,
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Interpretation of types. VJτKδη : SemType

VJ⊥Kδη(_) ≜ False

VJ⊤Kδη(_) ≜ True

VJ()Kδη(v) ≜ (v = ())

VJboolKδη(v). ≜ ∃b. v = b

VJintKδη(v) ≜ ∃i. v = i

VJαKδη(v) ≜ η(α)(v)

VJτ listKδη(v) ≜ v = [] ∨ ∃u, us. v = u :: us ∗ VJτKδη(u) ∗ ▷VJτ listKδη(us)
VJκ * τKδη(v) ≜ ∃w,w′. v = (w,w′) ∗ VJκKδη(w) ∗ VJτKδη(w′)

VJκ + τKδη(v) ≜ ∃w. (v = inj1 w ∗ VJκKδη(w)) ∨ (v = inj2 w ∗ VJτKδη(w′))

VJτ refKδη(v) ≜ ∃ℓ. v = ℓ ∗ ∃w. ℓ 7→ w ∗ VJτKδη(w)
N .ℓ

VJκ ρ−→a τKδη(v) ≜ 2∀w.VJκKδη(w) −−∗ wpa (v w) ⟨RJρKδη⟩{y.VJτKδη(y)}
VJ∀α. τKδη(v) ≜ ∀A.VJτKδη,α7→A(v)

VJ∀θ. τKδη(v) ≜ ∀E.VJτKδη,θ 7→E(v)

Interpretation of rows. RJρKδη : SemRow

RJρKδη ≜
⋃

σ∈ρ SJσKδη

Interpretation of signatures. SJσKδη : SemSig

SJ(s : ι⇒ τ)Kδη ≜ (δ(s), λv Q.VJιKδη(v) ∗ 2∀w.VJτKδη(w) −−∗ Q(w))

SJθKδη ≜ η(θ)

Interpretation of typing judgments. Ξ | ∆ | Γ ⊨a e : ρ : τ

Ξ | ∆ | Γ ⊨a e : ρ : τ ≜
∀ η, δ, vs. (∀ {x 7→ κ} ⊆ Γ. VJκKδη(vs(x))) −−∗ wpa (e[vs][δ]) ⟨RJρKδη⟩{y.VJτKδη(y)}

Figure 7.9: Interpretation of types, rows, signatures, and typing judgments.
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Interpretation of disjointness contexts. JDKδη : iProp

JDKδη ≜ (∀s ∈ dom(D). δ(s) 7→2 ()) ∧ (∀{s 7→ (S, V )} ⊆ D. δ(s) /∈ δ(S) ∧ δ(s) /∈ η(V ).1)

Interpretation of the subsumption relation on types. D ⊨ τ ≤T τ

D ⊨ ι ≤T τ ≜ 2∀η, δ. JDKδη −−∗ ∀v. VJιKδη(v) −−∗ VJτKδη(v)

Interpretation of the subsumption relation on rows. D ⊨b ρ ≤R ρ

D ⊨b ρ ≤R ρ′ ≜ 2∀η, δ. JDKδη −−∗ (RJρKδη ≤L RJρ′Kδη ∧ (b = false −−∗ RJρKδη.1 ⊆m RJρ′Kδη.1))

Interpretation of the subsumption relation on signatures. D ⊨ σ ≤S σ′

D ⊨ σ ≤S σ′ ≜ 2∀η, δ. JDKδη −−∗ (SJσKδη ≤L SJσ′Kδη ∧ SJσKδη.1 = SJσ′Kδη.1)

Figure 7.10: Interpretation of disjointness contexts and of the subsumption relation.

the implicit valid-and-distinct property in the definition of wp unfolds as the assertion
ValidDistinct RJρKδη.1. This assertion means that the list of dynamic labels bound by the
effect names in ρ is valid and distinct, or, using the terminology introduced in Section 7.3,
that ρ is dynamically distinct.

The meaning of the semantic judgment Ξ | ∆ | Γ ⊨a e : ρ : τ can be given as follows:
for every row- and type-variable map η, effect-name map δ, and for every substitution vs
of variables x in dom(Γ) with values in the interpretation of Γ(x), the complete program
e[vs][δ] produces a value in the semantic type VJτKδη and performs effects according to
the semantic row RJρKδη.

Semantic interpretation of the subsumption relation

The semantic interpretation of a subsumption relation on types, signatures, or rows is
a TesLogic relation on the interpretation of types, signatures, or rows, respectively. Like
the semantic judgment, the semantic interpretation of a subsumption relation employs
a double turnstile symbol ⊨ to differentiate it from the syntactic subsumption relation.
Its definition appears in Figure 7.10. This definition depends on the interpretation of
disjointness contexts.

The interpretation of a disjointness context D asserts, for every effect name s in the
domain of D, that s has been allocated, the assertion δ(s) 7→2 () holds, and that D
maps s to a pair of a set of names S and a set of row variables V , such that there is no
aliasing between s and S, δ(s) does not belong to the image of δ over S, nor between s
and V , δ(s) does not belong to the image of η over V .

The interpretation of the relation D ⊢ κ ≤T τ asserts that, under the non-aliasing
assumption JDKδη, every value in the interpretation of κ belongs to the interpretation
of τ . The interpretation of the relation D ⊢b ρ ≤R ρ′ asserts that the interpretation
of ρ′ is weaker than the interpretation of ρ (according to the order _ ≤L _, defined in
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Subsection 7.4.1). Moreover, it also asserts that, if the permission b to erase absence
signatures is off, then every label appears in RJρKδη with multiplicity equal to, or less
than, its multiplicity in RJρ′Kδη. We express this property by implicitly regarding lists as
multisets and by exploiting the subset relation on multisets _ ⊆m _. The interpretation
of the relation D ⊢ σ ≤S σ′ asserts that (1) the interpretation of σ′ is weaker than the
interpretation of σ and that (2) the list of labels in SJσKδη.1 is equal to SJσ′Kδη.1. This
equality expresses the fact that the subsumption relation allows one to weaken/strengthen
the types that appear in a signature, but not their effect names.

7.4.3 Soundness of Tes

The soundness theorem states that, if Tes accepts a program e, then e is safe (that is, e
either diverges or terminates with a value):

Theorem 7.2 (Soundness) If the judgment ∅ | ∅ | ∅ ⊢a e : ⟨⟩ : () is derivable, then e
is safe.

To prove this theorem, we first establish the fundamental theorem:

Theorem 7.3 (Fundamental Theorem) If the syntactic typing judgment Ξ | ∆ |
Γ ⊢a e : ρ : τ is derivable, then its semantic interpretation Ξ | ∆ | Γ ⊨a e : ρ : τ holds.

By exploiting Theorem 7.3, it follows that, if Tes assigns a program e the typ-
ing judgment ∅ | ∅ | ∅ ⊢a e : ⟨⟩ : (), then e enjoys the following specification:
wpa e ⟨RJ⟨⟩K∅∅⟩{VJ()K

∅
∅}.

To complete the proof of Theorem 7.2, it suffices to simplify RJ⟨⟩K∅∅ as [], and to apply
Theorem 2.1.

The proof of Theorem 7.3 proceeds by induction on the derivation of typing judgments.
Each typing rule gives rise to the proof obligation that the interpretation of judgments in
the premise implies the interpretation of the judgment in the conclusion. For each typing
rule, there is a well-suited reasoning rule allowing this proof obligation to be completed
inside the TesLogic logic. The case of the typing rule MonotonicityTyped relies on the
Fundamental Theorem of The Subsumption Relation:

Theorem 7.4 (Fundamental Theorem of The Subsumption Relation) (1) If D ⊢
κ ≤T τ is derivable then D ⊨ κ ≤T τ holds; (2) If D ⊢ σ ≤S σ′ is derivable then
D ⊨ σ ≤S σ′ holds; (3) If D ⊢b ρ ≤R ρ′ is derivable then D ⊨b ρ ≤R ρ′ holds.

Each of the statements in Theorem 7.4 is proved by induction on the subsumption
derivation.

7.5 Related work

Hillerström and Lindley [HL16] study a core formal calculus that serves as a model
of Links [CLWY06], a functional programming language for web applications that the
authors extend with support for effect handlers. Taking advantage of Links’s existing
row-based approach to type-checking records, the authors consider a similar approach to
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type-checking effectful programs: they annotate an arrow with a row of labels denoting
the effects that a function might perform. Moreover, the system has support for row
polymorphism following Rémy’s discipline [Ré89]: the kind system, in combination with
a syntactic well-formedness criteria, ensures that labels in a row are pairwise distinct.
Links does not support the dynamic generation of effect labels.

Bauer and Pretnar [BP14] present the theoretical foundation of Eff , a programming
language with support for handlers, and dynamic generation of effect labels. However,
the authors consider a subset of Eff that excludes the generation of effect labels. They
endow this core Eff calculus with a row-based type system that ensures strong type
safety. Later [BP15], the same authors extend this core calculus with support for dynamic
generation of effect labels. However, in this extended calculus, strong type safety no
longer holds: well-typed programs can perform unhandled effects. The system has support
for value-polymorphic types, whose introduction applies only to programs that do not
perform effects.

Leijen [Lei17] formalizes a subset of the Koka language [Lei20]. This formalization
consists of a calculus with support for handlers and globally defined effects, of a type system
with support for both value and effect polymorphism, and of a compilation strategy for
explicitly typed programs. This strategy relies on a selective CPS transformation [Nie01],
which Leijen extends with support for effect-polymorphic programs. As in Tes, an arrow
type in Leijen’s type system is annotated with a row of effects. Unlike Tes, a row in
Leijen’s system is univariate: it can have at most one row variable. In Tes, the ability
to have multiple variables in a row is important, for example, in the statement of the
typing rule of a lexically scoped handler. Indeed, the client of such a handler has an
effect-polymorphic type ∀θ. (α θ−→ β)

θ· ρ−−→ τ, where θ stands for the effect that is allocated
by the handler. If rows were univariate, then the row ρ could contain no variables, because,
otherwise, the row θ · ρ would not be univariate. Tes does not impose such a restriction.
Another difference is the introduction of polymorphic types: in Tes, the generalization of
type and row variables applies to programs that perform effects, whereas Leijen argues
that, in a possible extension with primitive references, generalization would apply only to
total programs : programs type-checked under the empty row, and, consequently, that do
not perform effects. Tes shows that this restriction is unnecessary: even in the presence of
references, it is sound to generalize the type of a program that performs effects, provided
that it does not interact with the store, that is, it neither uses references nor allocates
labels.

A notable omission from Leijen’s formalization is Koka’s inject [Lei14], a construct
that works as a lift coercion. Biernacki et al. [BPPS18] are the first authors to provide a
formal treatment of a calculus with such a construct. In addition to its formal operational
semantics, they design a row-based type system (with support for effect polymorphism
through univariate rows) for this calculus. They conceive the first binary logical relations
for handlers, and they apply these relations to prove that their system is sound. In a later
paper [BPPS19], the same authors introduce λHEL, a calculus with support for both the
dynamic allocation of effect labels and effect coercions. In addition to the lift coercion,
they consider (1) the swap coercion, which exchanges two effects in a row, (2) the cons
coercion, which rearranges effects deep in a row, and (3) the composition of coercions.
These coercions do not add expressiveness to the language: they can all be written in



134 7. A Type System for Effect Handlers with Dynamic Labels

terms of lift. Still, they facilitate how the programmer can modify the way in which an
effect dynamically searches for a handler. They equip this calculus with a type system
with support for effect-polymorphic, value-polymorphic, and existential types. Although
the function counter, discussed in Sections 7.1 and 7.3, is expressible in λHEL, the type
system designed by the authors does not accept this program. (This has been confirmed
by the authors via personal communication.) The technical reason why this program is
rejected is that the subsumption rules of their system are not flexible enough: a call to a
function f with an abstract row θ cannot occur in a context whose row is not exactly θ.
(It is not trivial how to overcome this issue, because, in their system, the interpretation
of a signature depends on the signature’s position in the row.) In Tes, such a function
call can occur in any context whose row includes the variable θ.

Zhang and Myers [ZM19] introduce the tunneling semantics as a novel operational
semantics that avoids accidental handling by construction. This semantics, however,
is presented only informally as a program transformation. This transformation is not
presented in the setting of λ⇓⇑, a formal calculus introduced by the authors. Furthermore,
as noted by Biernacki et al. [BPPS20], there is a discrepancy between the paper presen-
tation of λ⇓⇑ and its Coq formalization. In the article, there is no dynamic generation
of fresh labels, whereas, in the Coq formalization, one finds a calculus with support
for this feature through a construct that corresponds to a lexically scoped handler: it
introduces a fresh effect label and installs a handler for this label. Therefore, if we take
the Coq formalization as the main reference, then Zhang and Myers’s work consists of the
introduction of a calculus for lexically scoped handlers, of a type system for this calculus
with support for effect polymorphism, and the soundness proof of this system using binary
logical relations. They apply these binary logical relations to show interesting program
equivalences. One of these equivalences, for example, shows that an effect-polymorphic
function cannot intercept effects abstracted by a row variable. This property seems
aligned with the intuitive idea of absence of accidental handling, but a formal definition
of this term still does not exist. Zhang and Myers and other authors [BSO20b] suggest
that the absence of accidental handling is equivalent to the parametricity of effect poly-
morphism. However, this definition is unsatisfactory, because there are systems both with
parametric polymorphism and that allow programs to intercept effects abstracted by row
variables. One example is the system Tes+Wind obtained by extending TesLang with
dynamic-wind [FYFF07] construct, dynamic-wind p e q, which monitors the execution
of e by invoking the thunk p when control enters e (at the beginning of e’s execution and
every time e is resumed) and by invoking the thunk q when control leaves e (at the end
of e’s execution and every time e performs an unhandled effect). Then, we extend Tes
with the following typing rule:

DynamicWindTyped
Ξ | ∆ | Γ ⊢a e : ρ : τ

Ξ | ∆ | Γ ⊢a p : ρ : () −→a () Ξ | ∆ | Γ ⊢a q : ρ : () −→a ()

Ξ | ∆ | Γ ⊢a dynamic-wind p e q : ρ : τ

This rule preserves the interpretation presented in Section 7.4. Therefore, Tes+Wind has
parametric effect polymorphism, because an effect-polymorphic type is interpreted by a
universal quantifier, but it accepts the program dynamic-wind p e q, which breaks Zhang
and Myers’s equivalences and is thus an example of accidental handling.
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Despite of their previous formal study of effect coercions, in the paper [BPPS20],
Biernacki et al. argue against these constructs, which they deem as impractical for real-
world programming, and conceive a type system for a language with support for lexically
scoped handlers only. The authors present two semantics for this language: (1) the open
semantics, where effect names are not substituted with labels, and evaluation is defined
among open terms in a capture-avoiding way, and (2) the generative semantics, where,
as in TesLang, effect names are substituted with dynamic labels. By means of binary
logical relations, the authors show that the system is sound and that these semantics are
equivalent.

Schuster et al. [SBMO22] show that well-typed lexically scoped handlers admit a type-
preserving CPS translation to System F. This translation erases the dynamic generation
of effect labels: the correspondence between effect-invocation sites and handlers is thus
statically inferred. This translation depends on the information gathered by their type
system, which includes a notion of regions [TT97], to denote the scope of a handler, and
a subsumption relation on regions to represent nested scopes.

Brachthäuser, Schuster, and Ostermann [BSO20b] develop a library in Scala for
programming with effect handlers. The library implemented using multi-prompt delimited
continuations. The operational behavior obtained through this encoding is similar
to lexically scoped handlers: installing a handler marks the stack with a fresh label;
performing an effect dynamically searches for the nearest matching label. The authors
exploit Scala’s support for path-dependent types and intersection types to encode effect
polymorphism and to guarantee effect safety.

Kammar and Pretnar [KP17] show that a handler calculus without references and
without allocation of effect labels admits a type system with unrestricted introduction
of value-polymorphic types. In particular, the generalization of type variables applies
to a program that handles and performs effects. Kammar and Pretnar establish the
soundness of their system through the syntactic approach [WF94], whereas we establish
Tes’s soundness through the semantic approach: we provide a semantic interpretation
of judgments as specifications in a program logic. This change in perspective leads to a
key observation: from a semantic point of view, combining polymorphism with general
references is akin to commuting a universal quantifier with an update modality.
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